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Abstract—Application of wireless networking technology in
tactical and mission-critical environments requires wireless con-
nectivity meets certain quality of service requirements; for
example, in such environments timely and reliable delivery of
data plays a critical rule in the mission success. For such
applications TDMA based MAC scheduling is considered an
attractive option. However, to have a functional TDMA based
MAC for ad hoc multi-hop networks, we need to have efficient
and scalable mechanisms for time synchronization and conflict-
free slot allocation among nodes. In this paper, we outline
progressive decentralized mechanism by which each node can do
time synchronization and slot assignment. Any new node wishing
to join the network first monitors ongoing transmission activity
and ascertains its pattern. Knowing the pattern of the existing
transmissions, the new node can synchronize its clock and assign
slots. The proposed slot assignment and time synchronization
scheme is implemented on a USRP test-bench. We show that
we could achieve time-synchronization accuracy on the order
of a sampling period. Besides, we can maintain accuracy at
this level in a perpetual way without any explicit exchange of
synchronization messages.

I. INTRODUCTION

Recently, the phenomenal increase in the wirelessly con-

nected devices and the applications running on them have

put an extremely high premium on the communications spec-

trum, and thus placing great demand on designing spectrum

efficient communication and networking protocols to meet

the requirements of the current and emerging applications

in wireless networking. The conventional wireless networks

require infrastructure support connecting the wireless devices

with an access point or a control center. However, in many

scenarios such a support infrastructure may be non-existent,

scarce, unsuitable, or even not desired. Examples in this area

are: disaster zones where large-scale emergencies have brought

infrastructure-based networks down, and military tactical oper-

ations which often take place in areas which are bereft of any

support infrastructure. For such environments, wireless ad hoc

networking technology holds promise for potential solution as

it would allow disparate set of devices to create a network on

demand as the need arises.

In a wireless network, simultaneous transmissions of two

or more nodes, at the same time and in the same channel,

may not be successful if their intended receivers are in the

radio interference range of more than one transmissions. So

a mechanism to control access to the shared wireless channel

is crucial to ensure efficient channel utilization and to meet

quality of service (QoS) requirements. The application of ad

hoc networking technology in tactical and mission-critical en-

vironments requires that the wireless connectivity be provided

which meets certain QoS; for example, in such environments

timely and reliable delivery of data plays a critical rule in the

success of the mission.

MAC schemes can be broadly classified into two categories:

random access and deterministic access. In the random access,

a node access to the shared wireless medium is controlled by

some random function. The archetypes of the random access

scheme are ALOHA and CSMA [1], from which several

collision avoidance schemes are derived of which IEEE 802.11

standard [2] for wireless LAN is the most popular example

to date. The main drawback associated with the random

access schemes is lack of determinism in performance guar-

antees (e.g., on the delay, reliability, and throughput) which

renders these schemes unsuitable for applications in which

deterministic performance is required, for example in real

time applications. Fixed medium access scheduling schemes

such as TDMA, on the other hand, can provide deterministic

network performance. Due to the performance determinism,

distributed TDMA based MAC scheduling is considered to be

an attractive solution in ad hoc networks for mission critical

applications [3], [4].

In a TDMA based solution, for successful transmissions,

the nodes need to agree on the time-slot boundaries and the

ownership of the slots. Over the years, a number of time

synchronization and slot assignment schemes appeared in the

literature. Recent examples of slot assignment protocols can

be found in [4]–[9]. Moreover, some recent examples of

time synchronization schemes are outlined in [10]–[12] and

references therein.

A majority of the existing slot assignment schemes assumes

that the nodes have already achieved time synchronization

and have agreed on the slot boundaries. Besides, for slot

assignment the problem is broken into two sub-problems:

first nodes find conflict free slot assignment minimizing the

number of slots used, subsequently nodes define frame lengths

in which to use the assigned slots. In this paper first we show

that this disjoint and sequential approach, although ensures

conflict free slot assignment, is suboptimal from the slot reuse

point of view. Subsequently, we outline a TDMA based MAC

scheme by which time synchronization and slot allocation are

done simultaneously at each node. Besides, for slot allocation,

we outline a scheme in which we aim to maximize the slot

reuse factor. In maximizing the slot reuse factor, each node

decides on its slot assignment and frame length jointly. The
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proposed TDMA based MAC protocol works in a progressive

decentralized way and is executed at each node independently.

In the proposed MAC protocol, each node utilizes information

from its one-hop neighbors only.

In this work we investigate the feasibility of implementing

the proposed TDMA based solution on the USRP (Univer-

sal Software Radio Peripheral) based software defined radio

platform. To this end, we implemented the components of the

MAC and PHY layers necessary to enable sharing of a com-

mon wireless channel among multiple nodes. The application

layer is designed to transmit alphanumeric messages. In the

implementation, nodes can find conflict-free slot assignment.

Regarding time-synchronization, we can achieve accuracy on

the order of a sampling period, which in our implementation

is set at one micro-second. Interestingly we can maintain

accuracy at this level in a perpetual way without any explicit

exchange of synchronization messages. Besides, we show that

the accumulated delay between two USRP nodes remains at

about 23 micro-seconds and shows little variability around this

value.

The remainder of the paper is organized as follows. Section

II presents preliminaries. Time synchronization is subject

of Section III. Section IV deals with the slot assignment

mechanism. Section V outlines details of the implementation

setup. Section VI presents the results and finally Section VII

gives some concluding remarks.

II. PRELIMINARIES

We consider a network in which network connectivity is

given by an un-directed graph G(N , E), where N and E be the

set of nodes and the set of edges among the nodes, respectively.

The cardinality of N (i.e., |N |) denotes the number of nodes

in the network and let it be N . An edge exists between nodes

i and j if and only if they are reachable from each other,

i.e., (i, j) ∈ E and (j, i) ∈ E . The set of one-hop neighbors

of a node i is defined as O(i) = {j : (i, j) ∈ E , ∀j ∈ N}
and the set of two-hop neighbors of the node i is defined as

T (i) =
{

⋃

j∈O(i) O(j) \ {i} ∪ O(i)
}

. The set of all nodes in

the contention area of the node i including itself is given by

C(i) = {i} ∪ O(i) ∪ T (i).

III. TIME SYNCHRONIZATION

In the TDMA scheme, time is slotted in fixed duration

epochs, called slots. The nodes need to agree on and respect

the slot boundaries in transmitting and receiving data. This

is where time synchronization comes into play. For time

synchronization, we consider two approaches: master/slave

based and decentralized which are discussed in Section III-A

and Section III-B, respectively.

A. Master/Slave Based Time Synchronization

The first approach operates on the master/slave principle and

use the network time protocol (NTP) type message exchange

[13]. Under this scheme each node (called slave node) has

its designated master node. The slave node sends out time-

stamped synchronization request packet. After receiving this

Slave Node

Master Node

T1

T2 T3

T4

Fig. 1: Message exchange sequence between the master and

slave nodes for time synchronization.

packet, the master node sends out time-stamped reply message.

In the reply, the master node also appends the received time-

stamp of the request packet, the time of its reception, and the

time when the reply is sent out. The slave node on receiving

the reply, can estimate the offset of its clock with respect to the

master node clock. Besides, the slave node can also estimate

the aggregate delay to the master node. Let us assume δ and

d be the clock offset and the delay, respectively. As shown in

Fig. 1, we can figure out the following relationship between

the time-stamps:

T2 = T1 + δ + d, (1)

T4 = T3 − δ + d. (2)

Given this information, it is straightforward to get

δ =
(T2 − T1)− (T4 − T3)

2
, (3)

d =
(T2 − T1) + (T4 − T3)

2
. (4)

Knowing the clock offset and the delay, the slave node adjusts

its time to synchronize with the master node time.

The aggregate delay, its magnitude and variability, depends

on the level at which the time-stamping of the synchronization

request and reply messages is done. For instance, if the

synchronization frames are time stamped at the MAC layer,

then the delay would include the time it takes for the packet to

leave the MAC layer from the sender all the way to the MAC

layer of the receiver. The only problem in this approach is that

the delay introduced by the processing chain from the MAC

layer to the RF front is often non-deterministic. This variability

of delay reflects in the high synchronization error. To minimize

the synchronization error, ideally, the time stamping of packets

shall be done as close to the PHY layer (i.e., RF front-end) as

possible. In our implementation. we time stamp the packets at

the PHY layer. On the transmit side, the time-stamp specifies

the time when first sample of the packet leaves the digital

up converter stage of the USRP. While on the receiver side,

the time stamp specifies the time when the first sample of

the frame leaves the digital down converter stage. With this

approach, as shall be shown in the results section, we achieve

the accumulated delay on the order of 23 micro seconds and

the delay shows very limited variability around this value.

B. Decentralized Time Synchronization

In the preceding scheme, for time synchronization, explicit

messages are exchanged between the nodes. Such an explicit
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exchange of messages are essential if we would like to

measure the delay between the two nodes. Once we know

the delay we may choose to compensate for it during the

transmission. However, if we do not compensate for the delay

then it would be part of the synchronization error. In our

implementation, we observe a delay that remains very much

constant. So in the second setup, the nodes compensate for this

delay. Under this setup, to decide on the slot boundaries and

subsequently constrain the transmissions/receptions within the

slot boundaries, the new node which joins the network uses

the boundary of the ongoing transmissions as a reference and

synchronizes with it. In this setup, the node simply listens the

channel and once detects a valid transmission, it can estimate

the start time of the slot1 and with that it can synchronize with

the ongoing TDMA transmissions. This is in contrast with

the master/slave based approach in which for synchronization

explicit time stamped messages are exchanged.

The procedure for time synchronization is executed indepen-

dently at each node and it proceeds as follows. The measured

offset from the slot boundary by a node at time instance t can

be expressed as follows:

yt = xt + nt, t = 1, 2, . . . (5)

where xt is the actual offset and is a parameter of interest, and

nt is the measurement noise. The nt is assumed to be zero-

mean Gaussian distributed (with variance σ2
t ) independent of

xt. To estimate xt we use Kalman filter. Assuming a slowly

varying parameter, under the Kalman filter model, the state of

a system at time t evolves from the previous state at time t−1
as follows:

xt = xt−1 + vt, (6)

where vt is the additive noise called process noise. The noise

is assumed zero-mean Gaussian distributed with variance α2
t .

The standard Kalman filter comprises two stages: predic-

tion update and measurement update. The prediction update

produces an estimate of xt given an estimate at t − 1 using

the model in (6). Then the measurement update combines

this predicted value with the measurement model in (5) and

produces final estimate of xt. Putting everything together we

can write

x̂t|t = x̂t−1|t−1 + β2
t (β

2
t + σ2

t )
−1(yt − x̂t−1|t−1), (7)

γ2
t|t =

β2
t σ

2
t

β2
t + σ2

t

, (8)

where x̂t|t is estimate of xt given observation and predicted

value at time t, γ2
t|t is the mean square estimation error, and

β2
t = γ2

t−1|t−1 + α2
t .

During each reception, each node estimates its offset from

the slot boundary as described above. The node compensate for

any timing error in the subsequent slot and transmits/receives

accordingly. By this way, the nodes can remain synchronized.

Before applying the correction, the node may do a sanity

check. If the timing offset is larger than a given threshold

1Details on how to find the slot boundary are given in Appendix A.

(a function of the slot duration and the preamble length),

the node ignores the error and assumes that the transmitter

of the given transmission has violated the slot boundary.

Else the node applies the correction. By doing so the node

can remain synchronized in a perpetual way as long as the

timing offset remains within bounds and the node receives

transmissions. Such kind of synchronization algorithm can be

termed as perpetual time synchronization and can be applied to

any packet-based transmission scheme operating on the time-

slotted principle. With this approach, as shall be seen in the

results section, we can achieve synchronization error on the

order of sampling rate of the signal.

In the master/slave based approach, the slave node syn-

chronize its clock with the clock of the master node—the

slave synchronized to master. While in the latter approach, a

node synchronizes with the ongoing transmissions—the node

synchronized to transmissions.

IV. SLOT ASSIGNMENT MECHANISM

How the nodes are going to assign slots? In the master/slave

setup, the solution is straightforward. When the master node

serves the synchronization request message, in the reply the

master node also appends the information on the TDMA

frame-size and the slots in which the node can transmit. Upon

receiving these information, the node knows everything to start

transmission in the allocated slots, and receive packets from

other nodes.

This master-slave based approach, although simple, does not

suit for ad hoc networks. With this in focus, we implemented

a second scheme called progressive decentralized MAC (PD-

MAC) which we proposed in [14]. According to the PD-MAC

protocol, each node allocates a time slot and selects its frame

length within which to use the slot. The slot allocation and

the frame size selection works in a joint way at each node.

The objective of the considered MAC scheduling protocol is

to maximize the reuse of the slots with the constraint that no

other node in C(i), for all i ∈ N , assigns the same slot as

node i.

We wish to maximize the communication channel utilization

among the nodes. In most of the existing studies, the TDMA

based MAC design problem is broken into the following two

subproblems:

1) Minimize the number of slots used in the network, and

2) Select frame lengths in which to use the assigned slot to

each node.

The two problems are sequentially solved. Where, often the

former problem is casted as a graph coloring problem. Given

the graph G(N , E), coloring of nodes can be viewed as a

mapping f : N 7→ S , where S is the set of colors (which

corresponds to slots). The colors are usually represented by a

small set of positive integers, i.e., S ⊆ N+, where N+ denotes

the set of all positive integers. In this setting, the slot allocation

problem is equivalent to the following problem:

minimize |S|,

subject to si 6= sj , si, sj ∈ S, ∀j ∈ C(i), ∀i ∈ N . (9)
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Fig. 2: Example network.

However, finding an optimal solution of this problem is

NP-hard [15], [16]. To this end, in the literature, heuristic-

based suboptimal solutions are proposed, for instance, in

[17], three greedy heuristic-based centralized slot assignment

procedures are proposed, namely: RAND, MNF, and PMNF.

For ad hoc networks, distributed or decentralized schemes are

sought because such networks are devoid of coordinating and

controlling infrastructure and the global topology knowledge

is hard to come by at individual nodes. For ad hoc networks,

distributed versions of RAND (named DRAND) and MNF

(named HUDSAP) are proposed in [8] and [5], respectively.

Once all nodes in C(i) have assigned a slot, the node i
selects frame length Li in which to use its assigned slot as a

function of s
(i)
max = max {sj : ∀j ∈ C(i)}, the maximum slot

number used within the contention area. Concretely, Li =
2ai , where ai is an integer number that satisfies the following

relation

2ai−1 ≤ s(i)max ≤ 2ai , ai > 0. (10)

This splitting of the scheduling problem into two disjoint

problems ensures conflict-free transmission schedule. How-

ever, from the objective of maximizing the channel reuse, the

approach could lead to suboptimal schedule, as shall be seen

in the ensuing discussion.

For a network comprising N nodes, let ξ be the average

number of conflict-free transmissions over a duration of N
slots. We define slot reuse factor denoted by η as a ratio of ξ
and N , i.e., η = ξ/N .

Remark 1: We can show that 1 ≤ η ≤ N/3. The minimum

value of the slot reuse factor could be trivially achieved by

assigning a slot to each node in a frame length of N without

slot reuse. On the other hand the upper bound of the slot reuse

factor could be achieved in linear topology, which is relatively

easy to prove.

The slot reuse factor basically tells us how many times a

slot is used in the network on average. For example, η = 2.5
would imply 2.5 transmissions per time-slot, on average in the

network. Table I gives a comparison of the slot reuse factors

for three schemes: namely, DRAND, HUDSAP, and PD-MAC.

The frame lengths in DRAND and HUDSAP are selected

according to (10). From the tables, we can observe that the

PD-MAC could give substantially higher slot reuse factor. As

shall be explained in the ensuing discussion, the PD-MAC

achieves this higher slot reuse factor by jointly optimizing the

slot allocation and frame size selection.

Our objective is to maximize the slot reuse factor η, which

is a function of assigned slots and frame lengths, such that

no other node in the contention area of a node i transmits in

the same slot as node i. Concretely, we consider the following

TABLE I: Comparison of the slot reuse factor of different

protocols for network in Fig. 2.

Node ID a b c d e f g h

DRAND

Slot No (s) 1 2 3 1 4 5 1 2

L 4 8 8 8 8 8 8 8

η 1.1250

HUDSAP
Slot No (s) 2 3 1 4 5 2 3 4

L 4 8 8 8 8 8 4 4

η 1.3750

PD-MAC
Slot No (s) 1 4 2 1 6 14 1 4

L 2 4 8 2 16 32 2 4

η 2.2188

optimization problem :

maximize
si,Li,∀i∈N

η(si, Li)

subject to si 6= sj ∀j ∈ C(i), ∀i ∈ N ,

si, log (Li) ∈ N+, ∀i ∈ N , (11)

where log denotes the logarithm to the base 2, and the set

N+ contains all positive integers. Finding the optimal solution

to this scheduling problem is NP-hard. That means we have

to rely on the heuristics based approaches where we have

to balance trade-off between optimality and computational

complexity. Besides, it is desirable that the solution could be

implemented in a distributed or decentralized way. To this end

in [14] we proposed a greedy heuristic based solution (called

PD-MAC) to the given optimization problem.

The PD-MAC works in a progressive decentralized way,

runs on each each node independently, and uses information

from one-hop neighbors. All nodes that have at least one-

node in their one-hop neighborhood that has completed slot

assignment are called frontier nodes. At any stage only the

frontier nodes attempt slot assignment. For a network in which

no node has yet assigned a slot, this last presumption implies

that we have to seed the network to start the process of slot

assignment. Concretely, that means we have to select a seed

node, which could be any node in the network, that completes

slot assignment first, and then its one-hop neighbors follows,

and so on. According to the PD-MAC, each node decides its

slot allocation and frame length jointly using information from

its active one-hop neighbors. A node when becomes a frontier

node listens to the on going transmission. In doing so it can

estimate the start time of slots and hence can synchronize with

the transmission, as explained in Section III. Once the node

detects the slot boundary, it continues listing the channel in

every slot. Based on this process, the node builds a slot activity

vector (SAV). Each frame of the on going transmissions

contains in it the TDMA frame length used by the respective

nodes. This information is used by the new node to find out

the maximum frame length currently used by its neighbors.

The node builds the SAV within this frame-length. If during

building the SAV, the node detects increase in the maximum

frame length, the node accordingly adapts its SAV. The node

does this training for a predetermined time duration. At the

end of which, the node decides its frame length and allocates

slots as explained in detail in [14]. In assigning slot(s) and
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frame length, every node leaves out at least one slot free in

its frame to allow another node to join the network at this

location. After completing the assignment process, the node

starts transmissions in the allocated slots.

V. IMPLEMENTATION ON USRP PLATFORM

A. Hardware and Software Platforms

In the implementation we use one USRP N210 and

two USRP B100. The RF daughter boards of the USRPs

are WBX Rev 2.0 and WBX Rev 3.0, respectively. The

USRP N210 is connected with the host computer operating

Linux kernel 3.3.1-5.fc16.x86 64, the processor is Intel(R)

Core(TM)2 Quad CPU Q6600@2.4GHz, and the RAM is 4

GiB. The USRPs B100 are connected with host computers

running Linux kernel 3.3.7-1.fc16.x86 64, processor Intel(R)

Core(TM)i7 CPU 920@2.67GHz, and RAM 8 GiB.

The algorithms and protocols related to the PHY, MAC, and

application layers are programmed in C++ in Qt development

environment. In the programming we use C++ standard library

and IT++ library. The IT++ is a C++ library of mathematical,

signal processing and communication classes and functions

which support simulation of communication systems. From the

user perspective, the IT++ provides functionality similar to the

MATLAB environment. The Qt is a C++ based cross-platform

development framework which is widely used for developing

softwares with or without a graphical user interface (GUI).

B. Software Architecture

Logically the program is divided into four threads: one

main thread (called the GUI thread) and three worker threads

as shown in Fig. 3. The worker threads are ‘Construct

Packet’, ‘Send/Receive Packet’, and ‘Process Packet’. Inter-

thread communication is realized by the Qt signal-and-slot

mechanism. The GUI thread, as the name implies, implements

a graphical user interface. Via this interface, a user can pass

certain parameters (e.g., transmit and receive frequencies,

sampling rate, antenna gain, source and destination node

addresses, un/acknowledged transmission mode, and MAC

packet filtering) to the program and conversely the program

displays its results to the user. Through the GUI, the user can

also enter alphanumeric text to send to another node.

The send/receive packet thread is responsible for transmit-

ting a packet from the host computer to the USRP device

air interface; the thread is also responsible to receive a burst

of samples from the USRP and deliver the burst to the host

computer. The send and receive operations are burst-mode

operations in which samples are received and transmitted in a

timed manner within given slot boundaries.

Once transmission of a packet finishes, the send/receive

packet thread requests the construct packet thread to start

constructing a new packet. Upon receiving this request, the

latter thread constructs a new packet. New burst of samples

captured by the send/receive packet thread is delivered to

the process packet thread, which processes the burst to find

out if it contains any valid packet. If the process packet

thread detects a data frame then it sends the received data
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Fig. 3: Architecture of the software program showing the

threads and the signals exchanged among them.

Preamble SFD PHR Payload (MAC Frame also called PSDU)

Fig. 4: PHY frame format.

for display to the GUI thread. Besides, if the received frame

asks for an acknowledgment, the processing thread signals the

packet construction thread to construct an acknowledgment

packet. If the received packet is an acknowledgment packet,

the construction packet thread is notified about it which takes

appropriate action. More concretely, upon receiving such a

signal, the packet construction thread removes any packet

from its packet queue against which the acknowledgment is

received. However, if no such packet exists, the thread simply

ignores the signal.

C. PHY and MAC Parameters

The PHY frame format and the coding of information bits

are adopted from the 250 kbps chirp spread spectrum (CSS)

PHY of IEEE Std 802.15.4-2011. The modulation of the PHY

layer is DQPSK. The MAC frame types and formats are also

adopted from the IEEE Std 802.15.4-201, albeit we customize

the use of some of frame header fields and frame types to

serve our purpose.

Fig. 4 shows the format of the PHY frame. The frame

comprises the preamble part, SFD (start of frame delimiter),

PHR (PHY header), and the payload part. The PHR field

represents the length of the payload part in bytes. The lengths

of all fields except the PHR field is same as specified in [18].

The PHR field length is limited to one byte. The modulator

employed in our implementation is derived from [18]. The

modulator outputs DQPSK symbols shaped with raised cosine

time-window.

On the receive side, samples are acquired from the USRP in

bursts. The receiver processes each burst independently. While
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processing a burst, the receiver first checks if a signal is present

on the channel. To this end, we calculate signal energy by

using running average over samples spanning eight modulation

symbols, that is,

E(i)
avg =

1

8K

(i+8)K−1
∑

κ=iK

|r(κTs)|
2, i = 0, 1, 2, . . . , (12)

where r(κTs) is the sampled base-band received signal, Ts

is the sampling period, and K = T/Ts with T denoting the

DQPSK symbol duration. Note that (12) is a test statistics for

the energy-based sensing scheme. The signal is assumed to be

present in the ith averaging window if E
(i)
avg is greater than a

threshold. Once signal is detected frequency offset estimation

and correction is performed in the next step.

Frequency offset exists in the received signal due to a finite

difference between the clock frequency of the transmitter and

the receiver. Since the received signal can have frequency

offsets, (coarse) carrier offset estimation and compensation

needs to be done before frame detection can proceed. In the

presence of frequency offset, the received base-band signal

with additive noise can be expressed as follows

r(κTs) = ej(2πvt+θ)
∑

i

cig(κTs − iT − τ) + n(t), (13)

where v denotes the frequency offset, θ is phase offset, ci’s
are modulation symbols, g(t) is the pulse shaping filter, and

n(t) is the noise term. Since we are working with the DQPSK

modulation, where information are transmitted in the phase

difference, the phase offset θ can be ignored as long as it

remains constant over the feedback length of the differential

encoder used at the transmitter. To estimate the frequency-

offset, we use delay-and-multiply method from [19]. This is

an open-loop offset estimator that does not rely on any specific

signal features—blind offset estimation. The acquisition range

of this estimator is about [−1
T
, 1
T
] and its mean-square-error

performance is comparable with the closed-loop methods [19].

Besides, the acquisition time of this method (being an open-

loop method) is shorter than the closed-loop methods. This

last feature, makes such a method more suitable for bust-mode

transmissions like TDMA system. According to the delay-and-

multiply method, an estimate of v can be given as follows:

v̂ =
2

πT
arg

{

4L0−1
∑

k=0

r

(

kT

4

)

r∗
(

(k − 1)T

4

)

}

, (14)

where L0 = T0

T
with T0 denoting the length of the signal burst.

Knowing the estimate of the frequency offset, we compensate

for it as e−j2πv̂κTsr(κTs).
After correcting the frequency offset, we find beginning

point of the PHY frame. For this purpose, we use known

preamble part of the frame. Concretely, we correlate the

sample sequence of known preamble with the signal burst and

find location of the correlation peak. From the peak index, we

can estimate starting point of the frame. Let p(n) denotes the

preamble part, of length M , of a transmitted frame2. Moreover,

2As both preamble and SFD fields are fixed and known, for start of frame
detection we use both of them. Thus p(n) comprises the preamble and SFD
fields.

let N be the length of the received signal burst r(n). For

computation of the cross-correlation function (CCF), p(n) is

zero-padded to the length of r(n)3. The CCF can be given by:

z(i) =

N−1
∑

n=0

r∗(n)p(n+ i), i = −N + 1, . . . , N − 1. (15)

The test statistics for the frame start position is defined as

I = arg max
−N+1≤i≤N−1

|z(i)|. (16)

Now in finding frame start position one of the following cases

may arise depending on the position of the preamble part

within the received burst:

1) I = 0, the preamble is completely contained in the

beginning of the burst, that is, the frame starts at r(0).
2) I < 0, only later part of the preamble is contained in

the beginning of the burst. In this case |I| samples of

the preamble are lost and r(0) is |I +1|th sample of the

preamble.

3) I > 0, complete preamble is sandwiched within the burst,

and in this case frame starts from r(I).

Thus from the knowledge of index I we can ascertain starting

position of a frame within a received burst. Besides, knowing

the frame start position we can recover the symbol timing.

From the frame starting point, we keep samples of the current

signal burst equivalent to the maximum expected frame length

and discard rest of the burst. The received burst then enters the

demodulator stage which performs converse functions of the

corresponding modulator stages, and outputs the MAC layer

frame.

VI. RESULTS

In this section performance results are obtained by oper-

ating the PHY with DQPSK symbol duration of 16 micro

seconds. We use the sampling frequency of one MSPS4. In

the experiments, transmissions are done in the ISM radio band

433.92 MHz. With the given symbol duration, the maximum

length of the transmitted frames could be as much as 43.777

milliseconds. And the minimum frame length could be as low

as 4.864 milliseconds5.

A. Master/Slave Based Scheme

In the master/slave setup, NTP-based message exchange

is used to synchronize time between the master and slave

nodes. Fig. 5 shows the synchronization request and response

messages captured on a real-time spectrum analyzer. After the

synchronization reply message is received by the slave node, it

can calculate the time-offset and the delay. Having calculated

these values, the slave node is synchronized with the master

node. In the same figure, after the time synchronization, we

can see a sequence of data messages exchanged between the

two nodes. Fig. 6 plots the measured delay at two nodes named

3We assume length of r(n) greater than that of the p(n), else no valid
frame can be contained in the received signal burst.

4The symbol duration and the sampling frequency are re-configurable.
5The shortest frame is the acknowledgment frame which does not have any

payload in the MAC part.
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Slave Sync Request
Master Sync Reply

Slave Data Transmissions
Master Data Transmissions

Fig. 5: An example of message-exchange sequence in mas-

ter/slave setup. Upon receiving sync reply message, slave node

is synchronized with the master node. After synchronization,

the master and slave nodes exchange data messages according

to their slot assignment.
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(b) Delay measured at YNG.

Fig. 6: Delay measured at two nodes, named YNG and STB.

The node at which delay is measured acted as a slave node

while the other acted as the master node.

YNG and STB, respectively, connected to the USRP B100

and the USRP N210. From the figures, we can observe that

the delay switches between 23 and 23.5 micro-seconds over

the measurements. We can conclude that the delay remains

fairly constant at around 23 micro-seconds for the two USRP

platforms. This constant delay is achieved by moving the

time-stamp close to the physical layer and thus excluding the

variability contributed by the upper layers which is observed

in other implementations [11].

B. Distributed Scheme

In this distributed scheme, the delay d is assumed to

be known (e.g., from the previous section) and the nodes

compensates for this delay during transmissions. Here for time

synchronization and slot allocation nodes use the decentralized

scheme outlined in this paper. Fig. 7 shows screen shots

captured from the real-time spectrum analyzer for a three node

network. The first screen-shot shows when there is only one

node in the network which occupies the first slot in a frame

length of two. Subsequently, when the second node joins the

Fig. 7: Screen shots from a real time spectrum analyzer

showing working of the PD-MAC protocol for a three-node

network implemented on a USRP based test-bench.
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Fig. 8: Time synchronization error measured at a node. Each

point on the solid line shows mean error measured over a

round of 30 minutes. The dotted vertical bars show variations

where length of each bar is equal to two times the standard

deviation.
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Fig. 9: Time synchronization error measured at the given node

during a measurement round.

network, the second screen-shot shows, it occupies the second

slot in a frame length of four. When the third node arrives, it

occupies the forth slot in a frame length of eight as shown in

the third screen-shot.

Once a node completed slot assignment, we measured

the time-offset from the slot boundaries over measurement

period of 30 minutes. The results of time-offset measured

at a node are plotted in Fig. 8 and Fig. 9. We can observe

that the synchronization error remains within 2 micro-seconds

and mostly the error is within 1 micro-second (the sampling

period).

VII. CONCLUDING REMARKS

The TDMA based MAC scheduling is an appropriate choice

for many applications in which deterministic medium access

scheduling is required. There exists plentiful literature on the

TDMA based scheduling. However, majority of these cases

focus on finding a conflict-free slot allocation among nodes.

In those works, the problem of TDMA based scheduling
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is broken into two disjoint problems which are sequentially

solved: first find conflict-free slot allocation, minimizing the

number of slots used, and subsequently select frame sizes in

which to use the assigned slots. This disjoint and sequential

treatment results in suboptimal spatial reuse of the slots in the

network. Time synchronization is an integral part of a TDMA

based MAC in which nodes need to agree and respect the slot

boundaries in transmitting and receiving data. The existing

slot assignment schemes assume that the nodes have already

achieved time synchronization by some other method. In this

paper, we outlined a fully functional TDMA based MAC

protocol by which nodes can simultaneously do time synchro-

nization, assign slots, and select frame lengths in which to use

the assigned slots. The MAC protocol works in a progressive

decentralized way. Each node runs the protocol independently,

and for time synchronization and slot assignment the node

use information from its one-hop neighborhood. The proposed

slot assignment scheme can give better slot reuse than the

existing schemes. This is realized by jointly optimizing the

slot allocation and frame length selection.

We implemented the TDMA based MAC protocol on a

USRP test-bench. We showed that the nodes can find conflict-

free slot assignment. We measured overall delay between two

USRPs and found that it remains at around 23 micro-seconds

with little variability. This approximately constant delay is

achieved by moving the time-stamp close to the physical

layer and thus avoiding the variable delays contributed by the

upper layers. This constant delay has important implication

on the achievable synchronization accuracy insomuch as we

can compensate for it and thus reduce the synchronization

error. We also showed that time-synchronization accuracy on

the order of a sampling period can be achieved. Besides, the

accuracy at this level can be maintained at this level without

explicit exchange of synchronization messages.

APPENDIX A

FINDING TIME-OFFSET FROM SLOT BOUNDARY

Let there be a pre-defined slot boundary at which time Tx

and Rx are supposed to transmit and receive, respectively.

However, due to their local clock drifts and erroneous knowl-

edge of the slot boundaries, Tx or Rx, or both, may go into

their respective modes earlier or later than they are supposed

to do. The timing-offset errors may be classified into three

categories: Rx directed, Tx directed, and Tx–Rx directed. In

the Rx directed offset, the Tx transmits at the slot boundary

whereas Rx either starts receiving earlier or later than the

boundary. In the Tx directed offset converse happens. The

Tx–Rx directed type appears as a combination of the earlier

two. At the Rx we can estimate timing-offset with respect to its

notion of the slot. And to do that, Rx use knowledge acquired

from the receiver signal sensing stage and the start of PHY

frame detection stage (cf., Section V-C). Concretely, let Ks be

the number of samples discarded in the signal sensing from

the captured signal burst. Also, let τoff be the timing offset.

The offset can be given by:

τoff = (Ks + I)Ts, (17)

where I is index of the CCF peak defined in (16).

The accuracy of the above method depends on the accuracy

of the index I of the CCF peak. The index is determined

by correlating the received burst sequence with the known

preamble sequence. The detection performance of correlation

based methods usually degrades under multi-path fading en-

vironments and residual frequency offset.
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