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Abstract—In this paper we study estimation in a power-
constrained wireless sensor network, where the network is
divided into disjoint groups called clusters. The sensors in each
cluster observe a random source that is correlated with the
sources being observed by the other clusters. Each cluster has
a designated cluster head (CH). Estimation of the sources is
performed in two time slots: In the first slot, the sensors in
each cluster amplify and forward their noisy measurements to
the CH that forms a preliminary estimate of the underlying
source; and in the second slot, the CHs send a scaled version
of their partial estimates to a remote fusion center (FC) that
forms the final estimate of the sources. The CHs and the FC
use minimum mean square error estimation rule. To minimize
the overall estimation distortion, we propose a power scheduling
scheme which allocates power to the sensors and the CHs subject
to constraints on the transmit powers of the individual clusters
and the overall network. We show that when the sources are fully
uncorrelated or fully correlated then the solution to the power
allocation problem has a computationally favorable structure
and is amenable for distributed implementation. However, the
partial correlation between the sources leads to coupling of the
optimization variables and the power allocation solution requires
centralized computation, which may be computationally expen-
sive. To this end, we propose an alternative formulation based
on an upper-bound on the distortion function, which leads toa
solution that shares characteristics of the fully uncorrelated and
correlated cases. Simulation examples illustrate the effectiveness
of the proposed power scheduling scheme.

Index Terms—Cluster-based WSNs, correlation, parameter
estimation, power scheduling, resource management.

I. I NTRODUCTION

SPURRED by the ease of deployment provided by the
wireless communication paradigm, wireless sensor net-

working is an emerging technology which finds application in
many fields [1]. A wireless sensor network (WSN) consists
of spatially distributed sensors that cooperatively monitor
physical or environmental conditions. The sensors are usu-
ally battery powered that can provide limited sensing, com-
munication, and computational functionalities. A significant
research has focused on developing distributed data process-
ing and cooperative communication strategies in the context
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of realizing energy-efficient sensor networks with acceptable
sensing capabilities. In this work, we study the problem of
power-constrained estimation in cluster-based WSNs where
our objective is to minimize a distortion measure subject to
constraints on the transmit powers.

In recent years, for WSNs, several energy-efficient esti-
mation algorithms have been proposed under a wide variety
of network models. For instance, [2]–[4] consider estimation
based on quantized sensor observations. In [5], the focus
is on designing a power allocation scheme where sensors
amplify and transmit their analog observations. The estimation
schemes in these works target the estimation of an unknown
deterministic parameter. The work in [6] proposed a power al-
location scheme for estimation that also takes into accountthe
power consumed in estimating the channels from the sensors
to the fusion center (FC). The works of [7]–[10] studied power
allocation in sensor networks with spatially correlated data. In
all these aforementioned works, individual sensors send their
observations, via single hop, to a centralized unit which forms
the estimate of the underlying source. This so-called central-
ized network topology is not favorable from the perspective
of energy-efficient estimation. Such a topology may also pose
a challenge in medium access scheduling—specifically for
networks with large number of sensors—because it would
not allow spatial reuse of spectrum resources among sensors.
In this regard, [11] investigated minimal energy progressive
estimation in sensor networks and [12] studied estimation
under different network topological settings. In [13] and [14]
power allocation schemes are proposed for estimation in
cluster-based wireless sensor networks. The power scheduling
schemes in all these works target estimation of a homogeneous
unknown deterministic parameter and neglect the effect of data
correlation.

Recently [15], [16] proposed a power scheduling scheme
that minimizes outage probability of estimation distortion in
cluster-based WSN observing spatially homogeneous source.
However, therein, optimized power allocation to cluster-heads
(CHs) is studied whereas power among the sensors in each
cluster is distributed uniformly. The authors of [17] proposed
an estimation scheme in cluster-based WSN in which they
target dimensionality reduction of the observations at each CH
and optimize power to transmit the compressed observationsto
the FC. The authors, however, assumed ideal communication
channels from sensors to their respective CHs. This assump-
tion of ideal communication channels, though simplifies the
design, is not a reasonable assumption. In any real world
application, the communication channel from each sensor to
its CH will experience path-loss and receiver noise, and may
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also be subject to multi-path fading and shadowing. In the
realm of energy-efficient estimation in sensor networks, it
is imperative to account for the channel imperfections when
designing a power allocation scheme. In recent past, some
studies emerged about clustering and route optimization for
correlated data gathering in WSNs, for example, see [18]–[20]
and references therein. However, these studies do not consider
power scheduling for energy-efficient estimation.

The existing energy-aware or power-constrained estimation
algorithms ignore the effect of data correlation in sensor
networks, while in this paper we consider a network that is
partitioned into clusters, where each cluster observes a separate
source albeit correlated with the sources being observed by
the other clusters. The estimation of the underlying sources is
performed in two steps. In the first step, the sensors in each
cluster amplify and forward their noisy observations to their
respective cluster head (CH) that forms a preliminary estimate
of the underlying source. Subsequently, in the second step,the
CHs amplify and forward their partial estimates to a remote
FC that forms the final estimate of the sources. To form the
estimates, both the CHs and the FC employ the minimum
mean square error (MMSE) estimation rule. Communication
between the sensors in each cluster and their respective CH,
and similarly between the CHs and the FC take place over
orthogonal multiple access channels.

From the perspective of energy-efficient estimation, uniform
power allocation (UPA) is not an optimal strategy due to the
variability of the quality of observations at the sensors, the
channel gains between the sensors and the CHs, the channel
gains between the CHs and the FC, the correlation structure,
and the cluster sizes. Towards this end, in this work we propose
an adaptive power allocation (APA) design that takes into
account all these factors in allocating power to the sensors
and the CHs, and gives distortion performance better than the
UPA scheme. Furthermore, compared to a centralized WSN
where all sensors send their observations directly to the FC,
the proposed cluster-based WSN performs better in terms of
estimation distortion. The power allocation design is based
on an optimization problem where we target to minimize the
overall estimation distortion subject to constraints on transmit
power of the individual clusters and the network as a whole.
We formulate the power allocation problem as a convex
optimization problem and outline its solution using a block
coordinate descent method (BCoDM) based approach.

We show that for the case of fully uncorrelated (and likewise
for the case of fully correlated) sources the solution to the
power allocation problem embodies favorable structure from
the point of view of computational cost and is amendable
for distributed implementation. Specifically, we show that
the underlying optimization problem can be decomposed into
simpler problems, which can be conveniently solved either
analytically or numerically. The resulting solution showssep-
arable structure along the clusters as well as the sensors.
On the other hand, for the case when sources are neither
fully uncorrelated nor fully correlated the solution to the
power allocation problem needs to be computed numerically
in a centralized way. The computational cost and the control
overhead associated with the centralized solution may become

prohibitive, in particular, for a large size network. In an effort
to cut corners, we develop an upper-bound for the distortion
function and then solve the optimization problem with that
bound as a surrogate for the distortion. The resulting solution
shares favorable properties as exhibited by the solution ofthe
uncorrelated case (and likewise the correlated case). The pro-
posed power allocation design, in all cases, shows significant
performance gain compared to a power allocation design based
on the UPA scheme. Moreover, energy efficiency comparison
with the centralized network topology shows that the proposed
cluster-based network scheme gives better performance.

Remainder of the article is organized as follows. Section
II presents the system model, formulates the optimization
problem, and introduces the adopted approach to solve it.
Section III outlines the solution for the case of uncorrelated
sources. Section IV outlines the solution for correlated sources:
Section IV-A and Section IV-B present solutions based on the
exact distortion function and the upper-bound of the distortion,
respectively. Section V outlines the solution for the case
of fully correlated sources. Section VI presents simulation
examples. Finally, Section VII gives some concluding remarks.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a hierarchical sensor network shown in Fig.
1, whereN ′

0 spatially distributed sensor nodes are divided
into Nc disjoint and non-overlapping clusters, indexed by
J = {1, . . . , Nc} such thatN ′

0 =
∑

j∈J Nj . WhereNj is the
number of sensors in clusterj, indexed byĨj = {1, . . . , Nj}.
We assume number of clusters and distribution of sensors in
the clusters as given, and we study the problem of power
allocation for energy-efficient estimation. The clusters observe
random Gaussian sources,sj ∼ N (0, σ2

sj
) for j ∈ J , that are

correlated such thatCov{sj , sk} = σsj
σsk

ρsj ,sk
, whereρsj ,sk

specifies the correlation betweensj andsk for all j andk in J .
Specifically, we assume that the sources are jointly Gaussian
distributed. The observation at each sensor is corrupted by
observation noise, which is independent of the underlying
sourcessj ’s and the observation noises across sensors. The
noisy observation at sensori in clusterj is xi,j = sj+ni,j for
all j ∈ J and i ∈ Ĩj . Whereni,j ∼ N (0, σ2

ni,j
) denotes the

observation noise. By allowing the variance of the observation
noise to vary across sensors, we can model a scenario where
observation channels from the sources to the sensors have
different quality across sensors. In a special case ofNj = 1
for all j—that is, each cluster comprises only one sensor—the
system model converges to the case discussed in [7]. For the
same single sensor per cluster setup, ifsj = s for all j (i.e.,
a spatially homogeneous source), the system model converges
to the case discussed in [5], [6]. In this work, however, we
investigate a general case, in whichNj ≥ 1 for all clusters,
that encompasses [5]–[7] as special cases.

The estimation problem we study here essentially corre-
sponds to estimation of a spatial random field, where we are
interested in the field values in each cluster. As an example
application, we can view the sensor network as deployed to
observe a Gaussian spatial random field. We assume that the
inter-sensor distances within each cluster are small compared
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Fig. 1. Architecture of the hierarchical sensor network.

to the inter-cluster distances. The sensors in each cluster
being close to each other have strong internal correlation
and therefore we can model the field within each cluster as
homogeneous. Whereas the long inter-cluster distances suggest
heterogeneous correlation among the field values in different
clusters. Note that by allowing the number of sensors to
vary across clusters we model the general setup, which gives
flexibility to observe the field in certain areas with high fidelity.

We consider estimation on asample-by-samplebasis,
that is, we do not study temporal dependencies of the
observations. In our future work, however, we will investigate
such dependencies. The estimation of the sources is performed
in two phases. In the first phase of an estimation cycle, the
sensors in each cluster amplify their observations and then
transmit to their respective CH such that the received
observations areyi,j =

√

φi,j c̃i,j(sj + ni,j) + wi,j for
all j ∈ J and i ∈ Ij , with Ij = Ĩj − {Nj}. Where
φi,j ∈ [0,∞) is a scaling or an amplifying factor,̃ci,j is
gain of the channel between the sensor and the CH, and
wi,j ∼ N (0, σ2

wi,j
) is the receiver noise. The noise is assumed

to be independent ofsj and ni,j for all i and j. Moreover,
the noise is assumed to be independent (of the noises) across
sensors in all clusters. Here without any loss of generality
we have assumed the sensorNj as the designated CH of
clusterj. The designated CH for each cluster can be a fixed
sensor or it can be dynamically selected from among the
sensors in that cluster [21]. Using matrix–vector notation, we
can write the received signals at CHj in a compact form
as yj = bjsj + fj , where yj =

[

y1,j . . . , yNj,j

]T
,

bj =
[√

φ1,j c̃1,j , . . . ,
√

φNj−1,j c̃Nj−1,j, 1
]T

, and
fj =

[√

φ1,j c̃1,jn1,j +w1,j , . . . ,
√

φNj−1,j c̃Nj−1,jnNj−1,j +

wNj−1,j , nNj,j

]T
.

Employing the MMSE estimation rule [22], the CHj
forms an estimatêsj of the sourcesj based on the received

observations. By definingRfj
:= E[fjf

T
j ], we can writeŝj as

ŝj = E
[

sjy
T
j

] (

E
[

yjy
T
j

])−1
yj

= σ2
sj

bTj
(

σ2
sj

bjb
T
j + Rfj

)−1
yj

(a)
=

bTj R−1
fj

yj

1/σ2
sj

+ bTj R−1
fj

bj

=

(

1

σ2
sj

+
1

σ2
nNj

+
∑

i∈Ij

φi,j c̃i,j
φi,j c̃i,jσ2

ni,j
+ σ2

wi,j

)−1

(

xNj

σ2
nNj

+
∑

i∈Ij

√

φi,j c̃i,jyi,j

φi,j c̃i,jσ2
ni,j

+ σ2
wi,j

)

, (1)

where equality (a) follows from the Woodbury identity or
the matrix-inversion lemma [23]. The associated mean square
estimation errorDj := E[(ŝj − sj)

2] is given by

Dj = E
[

s2j
]

− E
[

sjy
T
j

] (

E
[

yjy
T
j

])−1
E [sjyj ]

= σ2
sj

− σ4
sj

bTj
(

σ2
sj

bjb
T
j + Rfj

)−1
bj

=

(

1

σ2
sj

+
1

σ2
Nj

+
∑

i∈Ij

φi,jci,j
φi,jci,jσ2

i,j + 1

)−1

, (2)

whereσ2
i,j = σ2

ni,j
for i ∈ Ij andσ2

Nj
= σ2

nNj
,j for j ∈ J .

Moreoverci,j = c̃i,j/σ
2
wi,j

for all i andj.
Let σ̃2

j be defined as

σ̃2
j =

(

1

σ2
Nj

+
∑

i∈Ij

φi,jci,j
φi,jci,jσ2

i,j + 1

)−1

. (3)

Now, let vj be a scaled version of̂sj asvj = Djσ̃
2
j ŝj . Thevj

can be written as follows:vj = sj + ϑj for all j ∈ J , where

ϑj = σ̃2
j

(

nNj,j

σ2
Nj

+
∑

i∈Ij

φi,j c̃i,jni,j+
√
φi,j c̃i,jwi,j

φi,j c̃i,jσ2
ni,j

+σ2
wi,j

)

. Here, it is

fairly straightforward to show thatϑj ∼ N (0, σ̃2
j ). Moreover,

ϑj is independent ofsj for all j and is independent ofϑk for
all k 6= j. We can viewvj as an equivalent observation at the
CH with ϑj as the equivalent observation noise. Expressingŝj
by vj simplifies ensuing formulation of the final estimate at
the FC and thereby helps in solving the optimization problem
in later development.

In the second phase of the estimation cycle, the CHs amplify
and transmit the equivalent observationsvj ’s to the FC such
that the received observations arezj =

√

ψj g̃j(sj +ϑj)+wj
for all J . Whereψj ∈ [0,∞) is an amplifying factor,g̃j
is gain of the channel between the CHj and the FC, and
wj ∼ N (0, σ2

wj
) is the receiver noise at the FC, which

is independent ofsj , ϑj , and wk for all j and k with
k 6= j. By definingz = [z1, . . . , zNc ]

T , s = [s1, . . . , sNc ]
T ,

H̃ = diag
(√
ψ1g̃1, . . . ,

√

ψNc g̃Nc

)

, and r =
[√
ψ1g̃1ϑ1 +

w1, . . . ,
√

ψNc g̃NcϑNc +wNc

]T
, the received observations at

the FC can be written in a compact form asz = H̃s+r where
s is the underlying source vector to be estimated. Now based
on the received signals and employing the MMSE estimation
rule, the FC forms an estimate of the source vector which is
given by

ŝ = RszR
−1
z

z = RsH̃
T
(

H̃RsH̃
T + R̃

)−1
z, (4)
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whereRsz := E
[

szT
]

, Rz := E
[

zzT
]

, Rs := E
[

ssT
]

, and
R̃ := E

[

rrT
]

. By definingǫ := s− ŝ as the estimation error
vector, we can write its covariance in the following form:

R̃ǫ = E
[

ǫǫT
]

= Rs − RszR
−1
z

RT
sz

= Rs − RsH̃
T
(

H̃RsH̃
T + R̃

)−1
H̃RT

s

=
(

H̃R̃−1H̃T + R−1
s

)−1
, (5)

where the last equality follows from the matrix-inversion
lemma.

A. Formulation of the Optimization Problem

In order to allocate power to the sensors and the CHs we
consider the following optimization problem:

minimize
ψj≥0, φi,j≥0, ∀i,j

tr
(

R̃ǫ

)

subject to
∑

j∈J

(

ψj
(

σ2
sj

+ σ̃2
j

)

+
∑

i∈Ij

φi,j
(

σ2
sj

+ σ2
i,j

)

)

≤ Pt,

∑

j∈J

ψj
(

σ2
sj

+ σ̃2
j

)

≤ ψmax,

∑

i∈Ij

φi,j
(

σ2
sj

+ σ2
i,j

)

≤ φ(j)
max, ∀j ∈ J , (6)

where we target to minimize the sum of mean-square esti-
mation errors of the underlying sources. In (6), the constraint
on the total network power (first constraint) enables a fair
comparison between the networks of different sizes. More-
over, putting a cap on the total network power consumption
conserves energy, which makes sense from the viewpoint
of global energy efficiency and to realize green information
and communication technology [24], [25]. The second and
third constraints of the optimization problem limit inter-cluster
interference and interference with any other network in the
neighborhood, which is important from the perspective of
spatial reuse of the spectrum resources. Depending on the
application of the WSN, some clusters may be located in
critical areas and it may be required to keep those clusters
alive for sufficiently long time; this observation gives another
motivation for putting cap on total transmit power of the
individual clusters and the CHs.

Note that the optimization variablesψj andφi,j are coupled
in the constraints. This coupling of the variables and the fact
that the optimization problem (6) is jointly non-convex over
the optimization variables make the problem difficult to solve.
To this end, in Prop. 1 we reformulate the problem in an
alternative form that bears favorable characteristics, aswe shall
see in the subsequent development.

Proposition 1: Let α ∈ [0, 1) such thatαPt power is
expended in all clusters on forwarding observations from the
sensors to the CHs and(1 − α)Pt power is expended on
forwarding observations from the CHs to the FC. Moreover,
assumingξj ≥ 0, γj ≥ 0, andβi,j ≥ 0 such that

∑

j∈J ξj ≤

1,
∑

j∈J γj ≤ 1, and
∑

i∈Ij
βi,j ≤ 1, we can write

ψj =
(1 − α)Ptξj
σ2
sj

+ σ̃2
j

, ∀j ∈ J ,

φi,j =
αPtγjβi,j
σ2
sj

+ σ2
i,j

, ∀j ∈ J , i ∈ Ij .

Hereξj ’s, γj ’s, andβi,j ’s respectively decide the power split
among the CHs, the clusters, and the sensors in each cluster.
With this we can write the problem (6) in the following form:

minimize
α, ξj≥0, γj≥0, βi,j≥0, ∀i,j

tr (Rǫ)

subject to α ∈ T ,
∑

j∈J

ξj ≤ 1,
∑

j∈J

γj ≤ 1,

∑

i∈Ij

βi,j ≤ 1, γj ≤ γ(j)
max, ∀j ∈ J , (7)

where T = [α0, 1), α0 = max{0, 1 − ψmax/Pt}, γ(j)
max =

min{1, φ(j)
max/Pt}, andRǫ is given as

Rǫ = Rs − RsH
T
(

HRsH
T + R

)−1
HRT

s

=
(

HR−1HT + R−1
s

)−1
, (8)

with

H = diag
(
√

(1 − α)Ptξ1g1, . . . ,
√

(1 − α)PtξNcgNc

)

,

R = diag
(

(1 − α)Ptξ1g1σ
2
1 + σ2

1 + σ2
s1 , . . . ,

(1 − α)PtξNcgNcσ
2
Nc

+ σ2
Nc

+ σ2
sNc

)

.

Where, for allj ∈ J , gj = g̃j/σ
2
wj

and

σ2
j =

(

1

σ2
Nj

+
∑

i∈Ij

αPtγjβi,jci,j
αPtγjβi,jci,jσ2

i,j + σ2
i,j + σ2

sj

)−1

. (9)

Proof: See Appendix A.

The alternative formulation in (7) has linear constraints
and the constraints are independent in the sense that each
constraint function depends on a separate set of optimization
variables (namelyα, ξj ’s, γj ’s, or βi,j ’s). The independence
of the constraints is a nice property that allows us to divide
the problem into subproblems, where in each subproblem we
can optimize over a separate set of optimization variables,as
outlined in the ensuing development. There we shall see that
each of these subproblems is jointly convex over the given set
of optimization variables.

B. BCoDM based Algorithm for Power Allocation

The solution to the power allocation problem (7) will
be obtained using a BCoDM based approach, which cycli-
cally/iteratively minimizes the cost functiontr (Rǫ) with re-
spect to (w.r.t.) each set of optimization variables subject to the
associated constraints while the other optimization variables
are held fixed. Specifically to solve (7) do the following:

1: Initializeα, ξj ’s, γj ’s, andβi,j ’s in their respective feasible
region.

2: For givenξj ’s, γj ’s, andβi,j ’s, find α by solving

minimize
α∈T

tr (Rǫ) . (10)
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3: For givenα, γj ’s, andβi,j ’s, find ξj ’s by solving

minimize
ξj≥0, ∀j

tr
(

Rǫ

)

subject to
∑

j∈J

ξj ≤ 1. (11)

4: For givenα, ξj ’s, andβi,j ’s, find γj ’s by solving

minimize
γj≥0, ∀j

tr
(

Rǫ

)

subject to
∑

j∈J

γj ≤ 1, γj ≤ γ[j]
max, ∀j ∈ J . (12)

5: For givenα, ξj ’s, andγj ’s, find βi,j ’s for eachj for j ∈ J
by solving

minimize
βi,j≥0, ∀i

tr (Rǫ) subject to
∑

i∈Ij

βi,j ≤ 1. (13)

6: Repeat step 2 to step 5 until there is no appreciable decrease
in the objective function.

The given algorithm is guaranteed to converge to a minimum
point of the optimization problem (7) as stated next.

Proposition 2: Let κ be the iteration index of the BCoDM
algorithm. For any feasible initialization pointα(0), ξ(0)j ’s,

γ
(0)
j ’s, andβ(0)

i,j ’s, the iteratesα(κ), ξ(κ)
j ’s, γ(κ)

j ’s, andβ(κ)
i,j ’s

generated by the BCoDM algorithm converge monotonically
to a minimum point of the problem (7).

Proof: The proof is based on the result of Prop. 2.7 in
[28], which proves the convergence of BCoDM provided the
minimum in each of the optimization problems (10) through
(13) is uniquely attained. Towards this end, in the ensuing
sections, we shall prove that each of these subproblems is
jointly convex over the respective set of optimization variables
and thus has a unique minimum. The minimum can be
obtained by using tools from the convex optimization theory.
With that we conclude the convergence proof of the BCoDM
algorithm.

Given that each step of the algorithm minimizes a convex
function by solving a convex optimization problem. Therefore,
the distortion functiontr

(

Rǫ

)

decreases monotonically from
one iteration to the other of the algorithm. In the sequel,
we outline solution of the optimization problem using the
partitioning approach (of diving the problem into subproblems
via BCoDM) for three distinct cases: Where the underlying
sourcessj ’s are uncorrelated, partially correlated, and fully
correlated.

III. U NCORRELATEDSOURCES

For uncorrelated sourcessj ’s, the covariance matrixRs is
diagonal, that is,Rs = diag

(

σ2
s1 , . . . , σ

2
sNc

)

. In this particular
case, we can write

tr (Rǫ) =
∑

j∈J

(

σ2
sj

−
σ4
sj

σ2
sj

+ σ2
j

(1 − α)Ptξjgj
(1 − α)Ptξjgj + 1

)

.

The uncorrelated case is of particular interest because in
this case the solution of the problems (10) to (13) can be
implemented in a distributed way in a certain sense. We use
the solution proposed for this case as a baseline and later on
show that even in case of partially and fully correlated sources,
the optimization problems could be solved by reverting to the
techniques outlined under the uncorrelated case.

A. Optimization ofα

For optimization overα we need to solve the optimization
problem (10). To this end, letf(α) = tr

(

Rǫ

)

. The function
f(α) is strictly convex overT and consequently has a unique
global minimizer inT , see Appendix B. The convexity of
f(α) overT means the following condition is both necessary
and sufficient forα∗ ∈ T to minimizef(α) overT (cf. Prop.
2.1.2 in [28]):

∂f(α∗)

∂α
(α− α∗) ≥ 0, ∀α ∈ T . (14)

For α∗ 6= α0, the condition (14) reduces to∂f(α∗)/∂α = 0.
An explicit solution forα∗ is intractable. However, to find
α∗, we may resort to numerical methods such as line search
methods for one-dimensional minimization, for example, the
Golden Section method [28]. Thanks to the convexity off(α)
overT , the convergence of these numerical methods toα∗ is
guaranteed.

Remark 1:Note thatf(α) =
∑

j∈J fj(α), with fj(α) =

σ2
sj
− σ4

sj

σ2
sj

+σ2
j

(1−α)Ptξjgj

(1−α)Ptξjgj+1 , has a separable structure along the

clusters where factorfj(α) depends on parameters concerning
the clusterj. As a perspective on implementing the solution,
the FC broadcasts an initial value ofα ∈ T to all CHs. Then
each CH computesfj(α) and/or∂fj(α)/∂α (as required by
the numerical method) and sends to the FC. The FC then
updates the value ofα and broadcasts it to the CHs. This
procedure is repeated until the stopping criterion is satisfied.

B. Optimization ofξj ’s

The optimization ofξj ’s is based on the problem (11). For
this purpose, as shown in Appendix C, the functiontr

(

Rǫ

)

is decreasing w.r.t.ξj ’s and the given optimization problem is
jointly convex overξj ’s. The convexity of the problem means
the Karush-Kuhn-Tucker (KKT) conditions are sufficient for
optimality of the solution forξj ’s [26]. Solving the KKT
conditions we get

ξj =
1

(1 − α)Ptgj

(

σ2
sj

√

(1 − α)Ptgj
(σ2
sj

+ σ2
j )λ

− 1

)+

, ∀j, (15)

where (x)+ = max{0, x} and λ is a Lagrange multiplier
associated with the sum-constraint. Because the objective
function is a convex decreasing function, therefore the op-
timum solution is at the constraint boundary, that is, the sum-
constraint is always active. Consequently the multiplierλ
should be determined so that it satisfies the constraint with
equality, that is,

∑

j∈K ξj = 1 which gives

λ =









∑

k∈K

σ2
sk

q

(1−α)Ptgk(σ2
sk

+σ2
k
)

1 +
∑

k∈K
1

(1−α)Ptgk









2

, (16)

whereK =
{

j ∈ J
∣

∣

∣

(1−α)Ptgjσ
4
sj

(σ2
sj

+σ2
j
)λ

> 1
}

. From (15) and (16),

it is fairly simple to show that the solution forξj ’s converges
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to

lim
Pt→∞

ξj =
σ2
sj

√

gj(σ2
sj

+ σ2
j )

(

∑

k∈J

σ2
sk

√

gk(σ2
sk

+ σ2
k)

)−1

. (17)

Remark 2:The structure of the solution forξj ’s is same
as the power allocation solution in [5], [6] for estimation
in networks comprising single sensor per cluster and all
observing the same source. From an implementation point of
view, the computation ofξj ’s can be done via a coordination
mechanism where the FC determines the value ofλ and
broadcasts it to the CHs, which then calculateξj ’s by (15).
Note that for givenλ and (1 − α)Pt, the expression (15)
depends on the local information available at each CH.

C. Optimization ofγj ’s

In order to optimizeγj ’s, we have the optimization problem
given in (12). On the same lines as in Appendix C, we can
show that the objective function is decreasing w.r.t.γj ’s and
the problem is jointly convex overγj ’s. In the optimization
problem as we are minimizing a decreasing function, there-
fore, the optimum solution is always at the boundary of the
constraints set. In the optimization, one of the following three
scenarios may arise. Firstly, if

∑

j∈J γ
(j)
max < 1 then the sum-

constraint (i.e.,
∑

j∈J γj ≤ 1) is inactive and all individual

constraints (i.e.,γj ≤ γ
(j)
max for all j) are active. In this

particular case, the optimization problem is trivial and all
clusters simply transmit withγj = γ

(j)
max for all j. Secondly, if

∑

j∈J γ
(j)
max = 1 then the sum- and all individual-constraints

are active, and we simply haveγj = γ
(j)
max for all j. Finally,

if
∑

j∈J γ
(j)
max > 1 then the sum-constraint is always active

and some of the individual-constraints may be active while
others remain inactive. To solve the optimization problem in
this last case, we proceed as follows: Initially, we ignore the
individual-constraints and solve the problem with only the
sum-constraint. Afterwards. later in this section, we shall show
how to incorporate the individual-constraints into the solution
obtained with only the sum-constraint.

For solution to the problem (12) without considering the
constraints on individualγj ’s, we propose a primal–dual
type algorithm based on the Lagrangian dual-decomposition
approach [27]. For this purpose, we can write the Lagrange
function associated with the problem (called the primal prob-
lem) as follows:

Λ(γ1, . . . , γNc ;µ) = tr
(

Rǫ

)

+ µ

(

∑

j∈J

γj − 1

)

=
∑

j∈J

[

σ2
sj

−
σ4
sj

σ2
sj

+ σ2
j

(1 − α)Ptξjgj
(1 − α)Ptξjgj + 1

+ µγj

]

− µ,

=
∑

j∈J

Λj(γj , µ) − µ. (18)

where µ is a Lagrange multiplier (also known as the dual
variable or the price value) associated with the constraint
∑

j∈J γj ≤ 1. The corresponding Lagrangian-dual function
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j∈J
γj(µ) as a function ofµ. Nc = 16, Nj =

Nj−1 + 4, σ2

i,j
= σ̄2

j
, σ̄2

j
= σ̄2

j−1
+ 0.1, ci,j = 1, and gj = 1 for

j ∈ J and i ∈ Ij with N0 = 0 and σ̄2

0
= 0. α = 0.5, ξj = 1/Nc, and

βi,j = 1/(Nj − 1), ∀i, j. log(Pt) = log
10

(Pt).

can be given by

Ω(µ) = minimize
γj≥0, ∀j

Λ(γ1, . . . , γNc ;µ)

=
∑

j∈J

minimize
γj≥0

Λj(γj , µ) − µ (19)

and the dual optimization problem can be written as follows:

maximize
µ≥0

Ω(µ). (20)

For the dual objectiveΩ(µ), we need to findγj ’s that minimize
Λ(γ1, . . . , γNc ;µ). In this regard, for givenµ, Ω(µ) can be
obtained by solvingNc separate problems as follows:

γj(µ) = arg min
γj≥0

Λj(γj , µ) (21)

for j ∈ J . Note that, (21) corresponds to the clusterj which
can be solved by the corresponding CH using some line search
algorithm for one-dimensional minimization.

The optimal dual variableµ can be obtained by findingµ
such that

∑

j∈J γj(µ) = 1 as illustrated in Fig. 2. This can be
done by a one-dimensional numerical search, for instance, bi-
sectional search method, or can be done using gradient-ascent
method that leads to the following updation rule [28]:

µ(τ+1) =

[

µ(τ) + δ(τ)
(

∑

j∈J

γj
(

µ(τ)
)

− 1

)]+

, (22)

where τ is an iteration index,δ is a positive step-size pa-
rameter, andγj(µ(τ)) is the solution of (21) for givenµ(τ).
Because the primal problem is convex having linear constraints
and is feasible over the domain of the problem thus the
problem satisfies the weak Slater’s condition for constraint
qualifications. Given that, the primal variablesγj(µ(τ))’s and
the dual variableµ(τ) converge to their optimal values as
τ → ∞, and at convergence the duality gap is zero [26],
[28].

Now, to solve (12) including the constraints on individual
γj ’s, we adopt the following procedure:

i: Setι = 0 and assumeγ(ι)
t = 1 such that

∑

j∈J γj ≤ γ
(ι)
t ,

whereι is an iteration index.
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ii: Solve the optimization problem as outlined in (18) to (22)
ignoring the individual constraints.

iii: Construct the setL =
{

j ∈ J |γj ≥ γ
(j)
max

}

, and for all

l ∈ L setγl = γ
(l)
max.

iv: Recalculate the sum-constraint asγ(ι+1)
t = γ

(ι)
t −

∑

l∈L γ
(l)
max.

v: Recalculateγr for all r ∈ R(ι+1) as in step ii with sum-
constraint

∑

r∈R(ι+1) γr ≤ γ
(ι+1)
t , whereR(ι+1) = R(ι)\

L with R(0) = J . Note thatR(ι) \L means all elements
of R(ι) that are not inL.

vi: Set ι = ι + 1 and repeat step iii to step v until all
constraints are satisfied.

The solution given in (18) to (22) with only the sum-
constraint, and the solution obtained by the preceding proce-
dure incorporating both the sum- and the individual-constraints
are optimal. The optimality can be justified by the convexity
of the underlying optimization problem and the decreasing
property of its objective function w.r.t.γj ’s.

Remark 3:From the viewpoint of implementation, the so-
lution based on the Lagrangian dual-decomposition approach,
as outlined here, can be computed in a distributed fashion with
the assistance of the CHs. Specifically, the FC first broadcasts
an initial price value, that is, the value ofµ. This value is used
by the CHs to calculateγj ’s by solving (21). Note that for CH
j, the problem (21) entirely depends on the local information
concerning that cluster. The newγj ’s are then sent to the
FC so that to update the priceµ. This updated value is then
broadcasted to the CHs. This procedure is repeated until the
γj ’s andµ converge to their optimal values.

D. Optimization ofβi,j ’s

For optimization ofβi,j ’s, we need to solve the problem
(13). In this case, the cost functiontr (Rǫ) and the constraints
decouple along the clusters. Consequently, the problem (13)
decouples intoNc independent problems, one for each cluster.
Here it is sufficient to consider the following problem for each
j ∈ J .

minimize
βi,j≥0,∀i

σ2
j subject to

∑

i∈Ij

βi,j ≤ 1, (23)

which is equivalent to

minimize
βi,j≥0,∀i

−
∑

i∈Ij

αPtγjβi,jci,j
αPtγjβi,jci,jσ2

i,j + σ2
i,j + σ2

sj

subject to
∑

i∈Ij

βi,j ≤ 1, (24)

where, on the same lines as Appendix C, we can show that
the objective function is a decreasing function and the problem
is jointly convex overβi,j ’s. The optimal solution forβi,j ’s
is outlined in the following, which is obtained by solving the
associated KKT conditions in the same way as in Section III-B

for ξj ’s.

βi,j =
σ2
sj

+ σ2
i,j

αPtγjci,jσ2
i,j

(√

αPtγjci,j
(σ2
sj

+ σ2
i,j)ηj

− 1

)+

, ∀i, (25)

ηj =









∑

κ∈Aj

1
σ2

κ,j

√

σ2
sj

+σ2
κ,j

αPtγjcκ,j

1 +
∑

κ∈Aj

σ2
sj

+σ2
κ,j

αPtγjcκ,jσ2
κ,j









2

, (26)

whereAj =
{

i ∈ Ij
∣

∣

αPtγjci,j

(σ2
sj

+σ2
i,j

)ηj
> 1

}

. For Pt → ∞, the

βi,j ’s converges to

lim
Pt→∞

βi,j =

√

σ2
s + σ2

i,j

ci,jσ4
i,j

(

∑

l∈Ij

√

σ2
s + σ2

l,j

cl,jσ4
l,j

)−1

. (27)

Remark 4:To implement the solution, the CHj determines
the Lagrange multiplierηj and broadcasts its value to all
sensors in that cluster. After knowingηj (as well asαPtγj),
the sensors can calculateβi,j ’s by (25).

IV. CORRELATED SOURCES

Herein we outline solution to the optimization problem (7)
for the case of correlated sourcessj ’s. This section consists
of two subsections. In the first, we solve the optimization
problem with the exact formulation of the cost function
tr (Rǫ) given in (8). The functiontr (Rǫ) is not separable,
because the covariance matrixRs is not diagonal in this
case. That is why, the resulting solution forα, ξj ’s, γj ’s, and
βi,j ’s (given in Section IV-A) does not admit a distributed
implementation, and may computationally be expensive as
the solution has to be computed numerically in an iterative
fashion that involves matrix computations. In order to address
these concerns, in the second subsection, we develop an upper-
bound fortr (Rǫ) and use this as a cost function to solve the
problem eqrefOptimizationProblem-II. The resulting solution
is amenable for distributed implementation and carries much
of the favorable properties as exhibited by the case of uncor-
related sources. In what follows, we ignore the constraints
γj ≤ γ

(j)
max for all j. Nevertheless, these constraints can

similarly be incorporated as we have discussed in Section
III-C.

A. Exact Solution

Here, we solve the problem (7) with the exact cost function
given in (8) by employing the BCoDM based approach out-
lined in Section II-B. Unlike the uncorrelated case, the solution
outlined here has to be computed in a centralized way because
the objective function does not support a separable structure.

1) Optimization ofα: The optimization problem (10) has
a unique global minimization point, as shown in Appendix
D. The corresponding optimalα can be found by using the
numerical methods for one-dimensional search as discussedin
Section III-A.
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2) Optimization of ξj ’s: The objective function of the
problem (11) is a decreasing function ofξj for all j. Besides,
the problem is jointly convex overξj ’s, as shown in Appendix
E. As the objective function is a convex decreasing function,
therefore, the optimum is at the constraint boundary, that is,
the sum-constraint

∑

j∈J ξj ≤ 1 is always active. Moreover,
the convexity of the problem means the following conditions
are sufficient for optimality of the solution forξj ’s [28].

ξj , ∀j = arg min
ξj≥0, ∀j

tr (Rǫ) + λ

(

∑

j∈J

ξj − 1

)

, (28)

λ > 0,
∑

j∈J

ξj − 1 = 0, (29)

where λ is a Lagrange multiplier. The optimalξj ’s can be
obtained by numerically solving (28) for givenλ (e.g., using
the gradient projection methods [28]) and findingλ > 0 such
that

∑

j∈J ξj(λ) = 1. To find the optimalλ, we can use
the bi-sectional search or the dual-ascent method described in
Section III-C.

3) Optimization ofγj ’s: Forγj ’s, the optimization problem
to solve is (11), where (as shown in Appendix F) the objective
function is decreasing w.r.t.γj and the problem is jointly con-
vex overγj ’s. The optimalγj ’s can be computed numerically
by a similar procedure as proposed forξj ’s in Section IV-A2.

4) Optimization ofβi,j ’s: As shown in Appendix G, for
eachj, the optimization problem (13) is jointly convex and the
cost function is decreasing overβi,j ’s. Once again, to solve
the problem we can use the procedure of Section IV-A2.

B. Approximate Solution

In the ensuing development, to solve the problem (7) for the
case of correlated sources, first we develop an upper-bound
for the objective function and subsequently we use this upper-
bound as a surrogate for the objective function and solve the
optimization problem.

Proposition 3: The trace ofRǫ can be upper bounded as
follows:

tr (Rǫ) ≤
(

∑

j∈J

σ2
sj

)

− Υ, (30)

where

Υ =

(

∑

j∈J ξjgjΨj

)2

∑

j∈J ξjgj

(

∑

k∈J ξkgkQ̃[j,k] + ξjgjΨjσ2
j +

Ψj(σ2
j
+σ2

sj
)

(1−α)Pt

) ,

Q̃ = Rs ◦ (RT
s
Rs), Ψj =

∑

k∈J

R2
s[j,k] =

∑

k∈J

Cov {Sj , Sk}2

in which the operator ‘◦’ denotes the Hadamard or Schur
product of the matrices.

Proof: See Appendix H.

Now we consider the optimization problem (7) where we
target to minimize the given upper-bound on the distortion.
For this purpose, it is sufficient to consider the following

optimization problem:

minimize
α∈T , ξj≥0, γj≥0, βi,j≥0, ∀i,j

− Υ

subject to
∑

j∈J

ξj ≤ 1,
∑

j∈J

γj ≤ 1,
∑

i∈Ij

βi,j ≤ 1, ∀j, (31)

where we have ignored the constraints on individualγj ’s.
Nevertheless, these constraints can be incorporated in the
solution by the procedure outlined in Section III-C. Note that
in the special case ofNj = 1 for all j—that is, where all
clusters comprise one sensor each—we haveα = 0, γj = 0,
and βi,j = 0 for all i and j. In this particular case, what
remains to be optimized isξj ’s and the optimization problem
(31) converges to the case studied in [8]. For the general
case, in the sequel, we outline a solution to the problem (31)
employing the BCoDM approach of Section II-B.

1) Optimization ofα: To minimize ‘−Υ’ w.r.t. α it is
sufficient to consider minimization of the denominator of
Υ—the numerator does not depend onα. Assumingfj(α) =

ξjgjΨj

(

ξjgjσ
2
j +

σ2
j +σ2

sj

(1−α)Pt

)

and f(α) =
∑

j∈J fj(α), the
optimization problem forα can be written as follows:

minimize
α∈T

f(α). (32)

We can solve (32) using one-dimensional numerical search
methods. As the functionf(α) decouples along the CHs
indicating that the numerical algorithm to findα can be im-
plemented in a distributed manner similar to the uncorrelated
case.

2) Optimization ofξj ’s: For optimization ofξj ’s, we pro-
ceed as follows. By defining

ξ = [ξ1, . . . , ξNc ]
T
,

Q̆ = diag
(

g2
1Ψ1σ

2
1 , . . . , g

2
Nc

ΨNcσ
2
Nc

)

,

q =

[

g1Ψ1(σ
2
1 + σ2

s1)

(1 − α)Pt
, . . . ,

gNcΨNc(σ
2
Nc

+ σ2
sNc

)

(1 − α)Pt

]T

,

u = [g1Ψ1, . . . , gNcΨNc ]
T
, U = uuT ,

g = [g1, . . . , gNc]
T , G = ggT ,

Q = Q̃ ◦ G + Q̆ = Rs ◦ (RT
s
Rs) ◦ G + Q̆,

we can writeΥ as follows

Υ =
ξTUξ

ξTQξ + qT ξ
. (33)

Now assuming1 := [1, . . . , 1]
T , the optimization problem for

ξj ’s can be written as

maximize
ξ≥0

Υ subject to 1T ξ = 1, (34)

where we have replaced the inequality constraint with equality
to exclude the case in which the objective function is un-
bounded over the feasible region of the problem.

Let F =
{

ξ ∈ R
Nc |ξ ≥ 0, 1T ξ = 1

}

denote the feasible
region of the problem (34). Note thatF is a compact convex
set in R

Nc (the set ofNc-dimensional real numbers). It is
easy to show thatU andQ are PSD matrices, which means
the numerator and denominator ofΥ are convex functions of
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ξ. Thus, the problem (34) is aconvex–convextype quadratic
fractional programming problem—for a detailed classification
of the types of fractional programs and their solution methods
see [29] and references therein. To solve (34), in what follows,
we develop an algorithm based on the parametric program-
ming approach, which is a powerful scheme for solving the
fractional programs.

For θ ≥ 0, let

f(ξ; θ) = ξTUξ − θ
(

ξTQξ + qT ξ
)

(35)

be a parametrized function associated with the problem (34).
Next we have the following proposition, which is based on
the well-known result by Dinkelbach [30].

Proposition 4: For givenθ, define

ϕ(θ) = maximize
ξ∈F

f(ξ; θ) (36)

with the corresponding optimalξ vector as

ξ(θ) = argmax
ξ∈F

f(ξ; θ). (37)

If there exists someθ∗ ≥ 0 such thatϕ(θ∗) = 0 then
ξ∗ = ξ(θ∗) is an optimal solution of the problem (34) and
the corresponding optimal value isθ∗ = Υ(ξ∗).

Proof: See Appendix I.

Proposition 5: The function ϕ(θ) defined in (36) is a
strictly decreasing convex function ofθ. Moreover, forθ∗ as
defined in Prop. 4, following holds

ϕ(θ) > 0, ∀θ < θ∗, and ϕ(θ) < 0, ∀θ > θ∗. (38)

Proof: See Appendix J.

Based on Prop. 4, the optimization problem (34) can be
solved using the following iterative procedure.

i: Set ι = 0 and initializeξ(ι) ∈ F .
ii: Computeθ(ι+1) = Υ

(

ξ(ι)
)

.
iii: Solve the following optimization problem to obtain the

global optimal solutionξ(ι+1):

maximize
ξ∈F

f(ξ; θ(ι+1)). (39)

iv: If |f(ξ(ι+1); θ(ι+1))| ≤ δ for someδ > 0 then terminate;
else setι = ι+ 1 and go to step ii.

This procedure is guaranteed to converge to the optimal
solution of the problem (34) provided the problem (39) can
be solved [30]. In this regard, although the feasible regionF
is a convex set, the functionf(ξ; θ(ι)) is not concave. Thus,
the problem (39) is a non-concave maximization problem
wherein many different local maxima may exist, which are
different from the globally optimal solution. In what follows,
we show that the problem (39) can be reformulated as a convex
quadratically constrained quadratic programming(QCQP)
problem, which can be solved by numerical methods, for
example, the interior point method [26].

By introducing a slack variableτ = ξTUξ, we can write
(39) in the following equivalent form:

minimize
τmin≤τ≤τmax; ξ≥0

θ(ι)
(

ξTQξ + qT ξ + ǫ
)

− τ

subject to 1T ξ = 1, ξTUξ − τ ≤ 0, (40)

where the objective and the constraint functions are convex,
and the problem (40) is a convex QCQP problem. Theτmin

andτmax in (40) are solution to the following problems:

τmin = minimize
ξ∈F

ξTUξ = minimize
ξ∈F

(

uT ξ
)2
,

τmax = maximize
ξ∈F

ξTUξ = maximize
ξ∈F

(

uT ξ
)2
,

where we can show thatτmin = (min{uj, . . . , uNc})2 and
τmax = (max{uj, . . . , uNc})2. That is, the corresponding
solution for ξj ’s in both cases is like thewinner-take-all
policy—meaning only one of theξj ’s is equal to 1.

3) Optimization ofγj ’s: For optimization overγj ’s, it is
sufficient to consider the following problem:

minimize
γj , ∀j

∑

j∈J

σ2
j ξjgjΨj

(

1 + (1 − α)Ptξjgj
)

subject to
∑

j∈J

γj ≤ 1, (41)

where we can prove that the objective function is decreasing
w.r.t. γj ’s and the problem is jointly convex overγj ’s. More-
over, note that the objective as well as the constraint functions
are separable along clusters. Consequently, the problem (41)
can be solved using the Lagrangian dual-decomposition ap-
proach outlined in Section III-C.

4) Optimization ofβi,j ’s: For optimization ofβi,j ’s, it is
sufficient to consider the following optimization problem for
eachj ∈ J :

minimize
βi,j ,∀i

σ2
j subject to

∑

i∈Ij

βi,j ≤ 1 (42)

whose solution is same as given in (25) to (27) under Section
III-D.

V. FULLY CORRELATED SOURCES

In the case of fully correlated sourcessj ’s, that is,sj = s for
all j, the sensors in all clusters essentially observe a spatially
homogeneous source. In this case, the mean squared estimation
distortionDǫ := E[(ŝ − s)2] at the FC based on the MMSE
estimateŝ of s can be written as

Dǫ =

(

1

σ2
s

+
∑

j∈J

(1 − α)Ptξjgj
(1 − α)Ptξjgjσ2

j + σ2
j + σ2

s

)−1

,

whereσ2
j is given in (9) withσ2

sj
= σ2

s for all j. Now we
consider the optimization problem (7) with the cost function
tr (Rǫ) replaced byDǫ. The optimization problem can be
solved by the BCoDM algorithm outlined in Section II-B.
Similar to the uncorrelated case, the algorithm to find optimal
α can be implemented in a distributed manner. To optimize
over α, we can prove the existence and uniqueness of the
optimal α; and we can find the optimal value using the
approach given in Section III-A. For optimalξj ’s, we can
show that the objective function is decreasing and is jointly
convex overξj ’s. We can find the optimalξj ’s by solving the
KKT conditions. The resulting solution has same structure as
in the uncorrelated case in Section III-B. To optimizeγj ’s, we
can show that the Lagrangian dual-decomposition approach
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Fig. 3. Network setup for simulation.

outlined in Section III-C can be employed. The solution for
optimalβi,j ’s comes out to be the same as outlined in (25) to
(27) under Section III-D withσ2

sj
= σ2

s for all j.
If each cluster only contains one sensor, that is,Nj = 1

for all j thenα = 0, γj = 0, andβi,j = 0 for all i and j;
and what remains to be optimized isξj ’s. In this scenario, the
optimization problem considered in this section convergesto
the case studied in [5], [6]. Besides, forNj = N , γj = 1/Nc,
and σ2

i,j = σ2
n for all i and j the problem converges to the

case discussed in [13], with the exception of how to findα, as
we have outlined herein—[13] does not explicitly state how to
find α and does not delineate on the associated convergence
issue. Thus, as a conclusion, our proposed framework models
the general case which includes related works as special cases.

VI. PERFORMANCEEVALUATION

In order to evaluate the performance of the proposed power
allocation scheme we consider a WSN comprisingNc = 16
clusters with sizesNj = Nj−1 + 4 for all j ∈ J with N0 =
0. In each cluster, the sensors are randomly and uniformly
distributed as shown in Fig. 3, wherec1 throughc16 denotes
the clusters. The correlation between the underlying sources
of clustersj andk is modeled as

ρsj ,sk
= e−d

c
j,k/θ, ∀j, k ∈ J ,

wheredc
j,k denotes the CH-to-CH distance between clustersj

andk; andθ > 0 is a scale parameter that controls how fast the
correlation decays with distance. We assumeσ2

sj
= 1 for all

j. Moreover, we assume that the observation noise variances
(i.e.,σ2

i,j ’s) are uniformly distributed between 0.1 and 10. The
channel SNR from sensori in clusterj to the FC is modeled
as gi,j = |h̃i,j |2/d̃2

i,jσ
2
wj

, where h̃i,j ∼ CN (0, 1) and d̃i,j
denotes the distance between the sensori in clusterj and the
FC. For clusterj, the CH is selected by the following rule:

i∗ = arg max
i

{gi,j , i ∈ Ij}

such thatgj = gi∗,j. For CH selection, other criteria are
also possible, for instance, in each cluster select the sensor
with largest remaining energy [21]. We also haveci,j =
|hi,j |2/d2

i,jσ
2
wi,j

; where hi,j ∼ CN (0, 1), and di,j denotes
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Fig. 4. Estimation distortion increases with increasingα0 and decreasing
γmax for θ = 5000.

the distance between the sensori and CH j. We assume
σ2
wj

= σ2
wi,j

= 10−4 for all i andj.
We compare the distortion performance of the proposed

APA design with a UPA scheme. In the UPA scheme we
haveα = αu = 0.5, ξj = ξu = 1/Nc, γj = γu = 1/Nc,
and βi,j = βuj

= 1/(Nj − 1) for all i and j. The results
are averaged over103 random deployments of the sensors
in each cluster. Unless stated otherwise, in the figures the
estimation distortiontr (Rǫ) is normalized by the number
of underlying sources being estimated. The purpose of the
simulations is to observe how the distortion performance of
the APA scheme varies withPt for different values ofα0

and γ(j)
max, and compares with the performance of the UPA

scheme over the degree of correlation among the sources.
Furthermore, the simulations show how the distortion achieved
by the approximate solution matches with the exact solution
for different levels of correlation among the sources. The
simulations also compare the distortion performance of the
cluster-based WSN with a centralized WSN. In the figures,
log(Pt) = log10(Pt).

Let γ(j)
max = γmax for all j. Increasing the value ofα0 and

decreasing the value ofγmax reduce the feasibility region of
the underlying optimization problem and consequently the es-
timation distortion is expected to increase. This is illustrated in
Fig. 4. When the value ofα0 is increased, it means there would
be less power available to transmit the partial estimates from
the CHs to the FC. In this case even though CHs may have
very good estimate of the sources, however they will not have
enough power assigned to reliably transmit those estimates
to the FC. On the other hand, whenγmax is reduced, there
would be less power available to the sensors to deliver their
observations to the CHs, which would deteriorate the quality
of the partial estimates at the CHs. The deterioration of the
estimates contribute to the increase in the overall estimation
distortion at the FC. Unless stated otherwise, in the subsequent
simulation examples, we assumeα0 = 0 andγmax = 1, which
effectively means we only consider constraint on the transmit
power of the overall network specified byPt.

Fig. 5 plots and compares the estimation distortion of
the APA and the UPA schemes as a function ofPt for
different levels of correlation among the underlying sources.
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According to the assumed model, the correlation among the
sources increases as the value ofθ increases. The figure shows
that the proposed APA scheme gives distortion performance
which is better than the UPA scheme and the performance
difference increases as the level of correlation increases. In the
perspective of efficient utilization of energy, this observation
illustrates the advantage of the proposed power allocation
scheme. Besides, we can see that the performance of the APA
scheme monotonically converges to the UPA scheme asPt

increases, which is typical of the power-constrained estimation
schemes.

In the proposed APA scheme, even optimizing over some
or anyone of the variables (α, ξj ’s, γj ’s, and βi,j ’s) may
give significant performance gain. This is illustrated in Fig.
6 and Fig. 7, where the APA scheme means all variables are
optimized and the UPA scheme refers to the case of all uniform
variables. The other schemes refer to mixed situations withall
variables optimized but the ones indicated, which are uniform.
The figures underline the relative importance of different
optimization variables and their impact on the distortion.For
instance, Fig. 6 shows that roughly beforelog10(Pt) = 30,
among the four types of optimization variables, selecting
βi,j = βuj

causes the least increase in the distortion (compared
to the APA case) whereas in the samePt range selecting
ξj = ξu causes the highest increase in the distortion. However,
atPt values higher than the given value, the converse behavior
can be observed. Effectively this means, for the given setup,
if the network transmit power falls below the given value then
splitting power uniformly among the sensors in each cluster,
to transmit observations to their respective CHs, does not
cost much in terms of distortion performance while imple-
mentation of the power allocation protocol will significantly
be simplified. Similarly, when the network transmit power is
greater than the given value, then splitting power in a uniform
way among the CHs, to transmit their equivalent observations
to the FC, does not cause significant increase in distortion.
One important conclusion from these simulation examples, we
could choose to optimize over a subset of the variables as a
trade-off between the computational cost and implementation
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overhead versus performance gain with respect to the UPA
scheme.

Next we compare the estimation distortion achieved by
the APA schemes proposed under the exact solution and
the approximate solution in Section IV-A and Section IV-B,
respectively. The results are plotted in Fig. 8 for different level
of correlation among the sources, where CES and CAS denote
the exact solution and the approximate solution, respectively.
The figure shows that the CAS achieves distortion which is
quite close to that achieved by the CES for a wide range
of network transmit powerPt and the correlation values.
Specifically, when the sources are not highly correlated then
the difference in the distortion performance is essentially
negligible over almost the entire range ofPt. This observation
illustrates the effectiveness of the APA scheme based on the
distortion approximation vis-à-vis the scheme based on the
exact distortion function.

Finally, we compare the distortion performance of the APA
scheme for the cluster-based hierarchical WSN with that
of the APA scheme for a centralized WSN in which all
sensors directly send their observations to the FC. Under the
centralized scheme, we can show that the estimation error
covarianceRǫ can be given by (8) withHR−1HT replaced



12

0 5 10 15 20 25 30 35 40

Network Transmit Power [10 log(Pt)]

100

10−1

10−2

E
st

im
at

io
n

D
is

to
rt

io
n

[tr
{R

ǫ
}/
N

c
]

CAS

CAS

CAS

CAS

CES

CES

CES

CES
Case-1

Case-2

Case-3

Case-4

Fig. 8. Distortion comparison of the exact solution (CES) and the ap-
proximate solution (CAS) for correlated sources: Case-1)θ = 50, Case-2)
θ = 500, Case-3)θ = 5000, and Case-4)θ = 50000.

0 5 10 15 20 25 30 35 40

Network Transmit Power [10 log(Pt)]

100

10−1

10−2

E
st

im
at

io
n

D
is

to
rt

io
n

[tr
{R

ǫ
}/
N

c
]

Centr

Centr

Centr

Centr

Clust

Clust

Clust

Clust

Case-1

Case-2

Case-3

Case-4

Fig. 9. Cluster-based (Clust) and centralized (Centr) WSNsdistortion
comparison for correlated sources: Case-1)θ = 50, Case-2)θ = 500, Case-3)
θ = 5000, and Case-4)θ = 50000.

by a diagonal matrixC defined as

C[j,j] =
∑

i∈Ĩj

Ptγjβi,jgi,j
Ptγjβi,jgi,jσ2

i,j + σ2
i,j + σ2

sj

, ∀j ∈ J .

In this particular case, the optimization problem (7) reduces
to

minimize
γj≥0, βi,j≥0, ∀i,j

tr (Rǫ)

subject to
∑

j∈J

γj ≤ 1,
∑

i∈Ĩj

βi,j ≤ 1, γj ≤ γ[j]
max, ∀j, (43)

which can be solved on the same lines as the problem (7). In
Fig. 9 the estimation distortions achieved by the APA designs
for the cluster-based and the centralized WSNs are plotted.
The figure shows that the cluster-based scheme outperforms
the centralized scheme in terms of achieved distortion. The
gap in distortion performance is significant when either the
network transmit power is reasonable large or the correlation
among the sources is high, or both. In the realm of energy-
efficient estimation, this illustrates the potential advantage of
the cluster-based hierarchical WSN topology.

VII. C ONCLUDING REMARKS

In this work we addressed the problem of power-constrained
estimation in cluster-based WSNs, where clusters observe
underlying correlated sources. The proposed power scheduling
design minimizes the estimation distortion with constraints on
the transmit power of the clusters as well as the network
as a whole. The estimation in the network is performed in
two stages. In the first stage, the CH of each cluster forms a
preliminary estimate of the source based on the observations
received from the sensors in the cluster. In the second phase,
the CHs transmit their estimates to the FC where the final
estimate is formed. In this work, we formulated the power
allocation problem as a convex optimization problem and
outlined its solution based on a block coordinate descent
method using partitioning principle by exploiting the inde-
pendence property of the constraints. The proposed power
allocation design for fully correlated and fully uncorrelated
cases can be implemented in a distributed fashion. However,
for partially correlated case the design requires a centralized
scheduler to optimize the power allocations. Subsequently,
we proposed an approximate solution based on an upper-
bound of the distortion function. Thus obtained solution bears
favorable characteristics for distributed implementation (very
much like the fully correlated and fully uncorrelated cases)
and gives distortion performance that matches quite closely
to that of the exact solution. We showed that the proposed
power allocation design gives distortion performance better
than a uniform power allocation scheme. We also showed the
advantage of the cluster-based hierarchical WSN compared to
the centralized WSN in the perspective of realizing energy-
efficient estimation.

In this paper we have investigated power-constrained es-
timation of spatially correlated sources in WSNs that are
organized in two tiers. It would be interesting to extend the
work to networks comprising more than two tiers, and ana-
lyze other optimization criteria like minimization of network
power consumption and outage probability, among others. We
assumed perfect knowledge of the instantaneous channel gains,
it would be for instance intriguing to study more realistic
scenarios where there are errors in the channel gains or to
adapt power allocations according to channel statistics instead
of the instantaneous channel gains. While in our analysis we
focused on the energy consumed in the transmitting operations,
it would be interesting to take the analysis one step further
and also incorporate the energy consumed in the receiving
operations. We assumed fixed wireless medium access scheme
for transmission of the observations from the sensors to the
CHs and from the CHs to the FC. It would be for example
of practical interest to study the estimation problem with joint
optimization of the transmit powers and the medium access
scheduling assuming random channel access mechanism like
slotted ALOHA or use schedule based mechanism like TDMA
but with spatial reuse of the time slots.
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APPENDIX A
PROOF OFPROP. 1

By defininggj = g̃j/σ
2
wj

for j ∈ J , it is straight forward to
obtainRǫ andσ2

j from R̃ǫ andσ̃2
j , respectively, by substituting

ψj = (1 − α)Ptξj/(σ
2
sj

+ σ̃2
j ) andφi,j = αPtγjβi,j/(σ

2
sj

+

σ2
i,j) for i ∈ Ij and j = J in (5) and (3). Now to prove

Prop. 1, we need to show that the constraints of the problem
(6) and the problem (7) are equivalent. To this end, note that
according to the definition ofα we can split the constraint
∑

j∈J

(

ψj
(

σ2
sj

+ σ̃2
j

)

+
∑

i∈Ij
φi,j
(

σ2
sj

+ σ2
i,j

))

≤ Pt into
two as follows:

∑

j∈J

ψj
(

σ2
sj

+ σ̃2
j

)

≤ (1 − α)Pt, (44)

∑

j∈J

∑

i∈Ij

φi,j
(

σ2
sj

+ σ2
i,j

)

≤ αPt. (45)

Now substitutingψj = (1−α)Ptξj/(σ
2
sj

+ σ̃2
j ) in (44) we get

∑

j∈J ξj ≤ 1. Similarly substitutingφi,j = αPtγjβi,j/(σ
2
sj

+

σ2
i,j) in (45) we get

∑

j∈J γj
(
∑

i∈Ij
βi,j
)

≤ 1, where the

inequality holds for
∑

i∈Ij
βi,j ≤ 1 and

∑Nc

j=1 γj ≤ 1.

Next, (44) in conjunction with
∑

j∈J ψj
(

σ2
sj

+ σ̃2
j

)

≤
ψmax imply (1 − α)Pt ≤ ψmax that gives α ≥
max{0, 1 − ψmax/Pt} := α0. Finally substitutingφi,j =

αPtγjβi,j/(σ
2
sj

+σ2
i,j) in

∑

i∈Ij
φi,j
(

σ2
sj

+σ2
i,j

)

≤ φ
(j)
max and

noting that
∑

i∈Ij
βi,j ≤ 1 andα < 1 give γj ≤ φ

(j)
max/Pt :=

γ
(j)
max. Becauseγj ≥ 0 and

∑

j∈J γj ≤ 1 which imply that

γj ≤ 1; thus we haveγ(j)
max = min{1, φ(j)

max/Pt}.

APPENDIX B
CONVEXITY OF f(α) OVER T FOR UNCORRELATED

SOURCES

Assumingqi,j :=
(σ2

sj
+σ2

i,j)Ptγjβi,jci,j

(αPtγjβi,jci,jσ2
i,j

+σ2
i,j

+σ2
sj

)2
and q̄i,j :=

(σ2
sj

+σ2
i,j)P 2

t γ
2
j β

2
j c

2
i,jσ

2
i,j

(αPtγjβi,jci,jσ2
i,j

+σ2
i,j

+σ2
sj

)3
, the second-order derivative of

f(α) w.r.t. α can be written as

∂2f(α)

∂α2
=
∑

j∈J

2Ptξjgjσ
4
sj

(

(1 − α)Ptξjgj + 1
)(

σ2
sj

+ σ2
j

)

[

Ptξjgj
(

(1 − α)Ptξjgj + 1
)2 +

σ4
j

∑

i∈Ij
qi,j

(

(1 − α)Ptξjgj + 1
)(

σ2
sj

+ σ2
j

)

+
σ2
sj
σ6
j

(
∑

i∈Ij
qi,j
)2

(

σ2
sj

+ σ2
j

)2 +
σ4
j

∑

i∈Ij
q̄i,j

σ2
sj

+ σ2
j



 . (46)

Clearly ∂2f(α)/∂α2 > 0 for any α ∈ T , which establishes
that f(α) is strictly convex overT . This proves the existence
and uniqueness of the global minimizer off(α) over T (cf.,
Prop. B.10 [28]).

APPENDIX C
CONVEXITY OF tr

(

Rǫ

)

OVER ξj ’ S FORUNCORRELATED

SOURCES

The first-order derivative oftr
(

Rǫ

)

w.r.t. ξj is negative for
any validξj for all j, that is,

∂ tr
(

Rǫ

)

∂ξj
=

−σ4
sj

σ2
sj

+ σ2
j

(1 − α)Ptgj
((1 − α)Ptξjgj + 1)2

< 0, ∀j, (47)

which shows thattr
(

Rǫ

)

is a decreasing function ofξj . As the
constraints of the problem (11) are linear, therefore, to prove
the convexity of the problem it is sufficient to show that the
objective function is convex. For this purpose, we can show
that the second-order derivatives oftr

(

Rǫ

)

w.r.t. ξj ’s are

∂2 tr
(

Rǫ

)

∂ξ2j
=

σ4
sj

σ2
sj

+ σ2
j

2(1 − α)2P 2
t g

2
j

((1 − α)Ptξjgj + 1)3
≥ 0, ∀j,

∂2 tr
(

Rǫ

)

∂ξl∂ξj
= 0, ∀l 6= j, (48)

which tell us that the Hessian of the objective function
is positive-semidefinite (PSD) that in turn proves that the
function is jointly convex overξj ’s.

APPENDIX D
EXISTENCE AND UNIQUENESS OFGLOBAL M INIMIZER α

FOR CORRELATED SOURCES

Let F andG be diagonal matrices with, forj ∈ J ,

F[j,j]

Ptξjgj
=
σ2
j + σ2

sj
+ (1 − α)

(

(1 − α)Ptξjgj + 1
)

σ4
j

∑

i∈Ij
qi,j

(

(1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

)2

Π3
jG[j,j]

2Ptξjgj
= (σ2

sj
+ σ2

j )Ptξjgj + (1 − α)(3 − 2α)Λjσ
2
j

∑

i∈Ij

q̄i,j+

(

σ2
sj

+ σ2
j + (2σ2

sj
+ σ2

j )(1 − α)Ptξjgj
)

∑

i∈Ij

qi,j+

(1 − α)σ2
sj
σ4
j

(

1 + (1 − α)Ptξjgj
)

(

∑

i∈Ij

qi,j

)2

,

whereΠj = (1−α)Ptξjgjσ
2
j +σ2

j +σ2
sj

. Note that, for allj,
F[j,j] ≥ 0 andG[j,j] ≥ 0 for anyα ∈ T .

The second-order derivative oftr
(

Rǫ

)

can be written as

∂2 tr
(

Rǫ

)

∂α2
= 2 tr

(

FRǫFRǫRǫ

)

+ tr
(

RǫGRǫ

)

. (49)

For any α ∈ T , note that tr
(

FRǫFRǫRǫ

)

≥ 0 be-

cause FRǫF =
(

R0.5
ǫ F

)T
R0.5
ǫ F and RǫRǫ = RT

ǫ Rǫ

are PSD1, and for any real PSD matricesA and B

following holds tr
(

AA
)

≥ 0. Moreover note that
tr
(

RǫGRǫ

)

=
∑

j∈J

∑

k∈J G[k,k]R
2
ǫ[j,k] > 0. Therefore,

∂2 tr
(

Rǫ

)

/∂α2 > 0 for any α ∈ T and thus shows that
tr
(

Rǫ

)

is strictly convex overT . This strict convexity proves
the existence and uniqueness of the minimizer oftr

(

Rǫ

)

over
T .

1Note thatRǫ is a covariance matrix and thus is PSD; for any PSD matrix
A its square root (i.e.,A0.5) exists such thatA = (A0.5)T A0.5 . Also,
AT A is PSD for any real matrixA.
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APPENDIX E
CONVEXITY OF tr (Rǫ) OVER ξj ’ S FORCORRELATED

SOURCES

The first-order derivative oftr (Rǫ) w.r.t. ξj , for all j, is
given by

∂ tr (Rǫ)

∂ξj
=

(α− 1)Pt(σ
2
j + σ2

sj
)gjrj

((1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

)2
, (50)

where rj =
∑

k∈J R2
ǫ[j,k]. Note that ∂ tr (Rǫ) /∂ξj < 0

for any valid ξj , which shows that the objective function is
decreasing overξj . To prove the convexity of the problem, it
is sufficient to show that the objective function is convex. For
this purpose, we can write the Hessian oftr (Rǫ) w.r.t. ξj ’s
as

∇2
ξ tr (Rǫ) = 2B + 2(ARǫA) ◦ (RǫRǫ), (51)

whereA andB are diagonal matrices with

A[j,j] =
σ2
j + σ2

sj

((1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

)2
,

B[j,j] =
(1 − α)2P 2

t (σ2
j + σ2

sj
)g2
jσ

2
j rj

((1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

)3
,

for all j. In (51)A◦B denotes the Hadamard product ofA and
B. Note thatRǫRǫ = RT

ǫ Rǫ andARǫA = (R0.5
ǫ A)TR0.5

ǫ A

are always PSD. Besides,B is PSD and the Hadamard product
of two PSD matrices is always a PSD matrix by theSchur
product theorem. We conclude that the Hessian∇2

ξ tr (Rǫ) is
PSD, which in turn proves that the function is jointly convex
over ξj ’s.

APPENDIX F
CONVEXITY OF tr (Rǫ) OVER γj ’ S FORCORRELATED

SOURCES

Let b̃j :=
∑

j∈J αqi,j/γj and b̄j :=
∑

i∈Ij
α2q̄i,j/γ

2
j with

qi,j and q̄i,j defined in Appendix B. For any validγj , we can
show that

∂ tr (Rǫ)

∂γj
=

(α− 1)Ptξjgj((1 − α)Ptξjgj + 1)σ4
j b̃jrj

((1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

)2
(52)

is negative for allj, which tells us thattr (Rǫ) is a decreasing
function of γj ’s. Moreover, the Hessian oftr (Rǫ) w.r.t. γj ’s
can be given by

∇2
γ tr (Rǫ) = 2B̄ + 2(ĀRǫĀ) ◦ (RǫRǫ), (53)

which is PSD by the same arguments as employed in Appendix
E. In (53) Ā andB̄ are diagonal matrices with

Ā[j,j] =
(1 − α)Ptξjgj((1 − α)Ptξjgj + 1)σ4

j b̃j

((1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

)2
,

B̄[j,j] =
Ā[j,j]

b̃j

(

σ2
jσ

2
sj
b̃2j

(1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

+ b̄j

)

rj ,

for all j. The preceding discussion proves that the given
optimization problem is jointly convex overγj ’s.

APPENDIX G
CONVEXITY OF tr (Rǫ) OVER βi,j ’ S FORCORRELATED

SOURCES

For any non-zero vectorv ∈ RNj−1, we can show that

vT∇2
βj

tr(Rǫ)v = aj
∑

i∈Ij

v2
i q̌i,j + āj

(

∑

i∈Ij

viq̃i,j

)2

, (54)

where∇2
βj

tr (Rǫ) is Hessian oftr (Rǫ) w.r.t. βi,j ’s for each

j, q̌i,j = α2q̄i,j/β
2
i,j , q̃i,j = αqi,j/βi,j, aj = 2Ā[j,j]rj/b̃j,

and

āj =
σ2
sj
σ2
j aj

(1 − α)Ptξjgjσ2
j + σ2

j + σ2
sj

+
Ā[j,j]

b̃j
ajRǫ[j,j].

As each of aj, āj , and q̌i,j is positive, therefore
vT∇2

βj
tr (Rǫ)v ≥ 0, which shows that the Hessian is

PSD and thus proves that, for eachj, the given optimiza-
tion problem is jointly convex w.r.t.βi,j ’s. We also have
∂ tr (Rǫ) /∂βi,j = −q̃i,jaj/2 < 0 for any valid βi,j , which
meanstr (Rǫ) is a decreasing function ofβi,j .

APPENDIX H
PROOF OFPROP. 3

To prove Prop. 3, we use the following lemma from [8].

Lemma 1:Let G andQ are two positive definite matrices,
then

tr
(

GTQ−1G
)

≥
(

tr
(

GTG
))2

tr (GTQG)
(55)

Proof: By defining A = GTQ−0.5 B = GTQ0.5,
(55) follows from the following Cauchy–Swarz inequality
tr
(

AAT
)

tr
(

BBT
)

≥
(

tr
(

ABT
))2

, which concludes the
proof of the lemma.

Now, from (8) we can write

tr (Rǫ) = tr (Rs) − tr
(

RsH
T
(

HRsH
T + R

)−1
HRT

s

)

,

≤ tr (Rs) −
(

tr
(

RsH
THRT

s

))2

tr (RsHT (HRsHT + R)HRT
s )
, (56)

which follows from (55) withG = HRT
s andQ = HRsH

T+
R. We can show that

tr
(

RsH
THRT

s

)

= tr
(

HTHRT
s
Rs

)

= (1 − α)Pt

∑

j∈J

ξjgjΨj, (57)

where Ψj =
∑

k∈J R2
s[j,k] =

∑

k∈J Cov {Sj , Sk}2. More-
over, we can show that

tr
(

RsH
T
(

HRsH
T + R

)

HRT
s

)

= tr
(

RsH
THRT

s
RsH

TH
)

+ tr
(

HTRHRT
s
Rs

)

, (58)
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Next, we can write

tr
(

HTRHRT
s
Rs

)

= (1 − α)2P 2
t

∑

j∈J

ξ2j g
2
jΨjσ

2
j

+ (1 − α)Pt

∑

j∈J

ξjgjΨj(σ
2
j + σ2

sj
),

tr
(

RsH
THRT

s RsH
TH
)

= diag(HTH)T Q̃diag(HTH)

= (1 − α)2P 2
t

∑

j∈J

∑

k∈J

ξjgjξkgkQ̃[j,k], (59)

whereQ̃ = (Rs) ◦ (RT
s Rs). By substituting (57) to (59) in

(56) we get (30).

APPENDIX I
PROOF OFPROP. 4

In order to prove Prop. 4, we need to show that the following
statements are equivalent, that is, (60)⇔(61).

θ∗ = max
ξ∈F

ξTUξ

ξTQξ + qT ξ
, (60)

max
ξ∈F

ξTUξ − θ∗
(

ξTQξ + qT ξ
)

= 0. (61)

Let the solution of (60) beξ∗. We can write for anyξ ∈ F

θ∗ =
ξ∗TUξ∗

ξ∗TQξ∗ + qT ξ∗
≥ ξTUξ

ξTQξ + qT ξ
≥ 0, (62)

which gives

ξ∗TUξ∗ − θ∗
(

ξ∗TQξ∗ + qT ξ∗
)

= 0,

ξTUξ − θ∗
(

ξTQξ + qT ξ
)

≤ 0, ∀ξ ∈ F . (63)

From (63), we have

max
ξ∈F

{

ξTUξ − θ∗
(

ξTQξ + qT ξ
)}

= 0 (64)

and the corresponding maximizer isξ∗. This proves that (60)
leads to (61) that is, (60)⇒(61). Similarly we can also show
that (61)⇒(60). For this purpose, assumeξ∗ be the solution
of (61), which implies that for anyξ ∈ F

ξTUξ − θ∗
(

ξTQξ + qT ξ
)

≤
ξ∗TUξ∗ − θ∗

(

ξ∗TQξ∗ + qT ξ∗
)

= 0. (65)

Dividing (65) by ξ∗TQξ∗ + qT ξ∗ gives

θ∗ =
ξ∗TUξ∗

ξ∗TQξ∗ + qT ξ∗
(66)

and similarly dividing (65) byξTQξ + qT ξ gives

θ∗ ≥ ξTUξ

ξTQξ + qT ξ
. (67)

From (66) and (67), we have

max
ξ∈F

ξTUξ

ξTQξ + qT ξ
= θ∗, (68)

which proves (61)⇒(60). With this, we have proved
(60)⇔(61).

J PROOF OFPROP. 5

For someθι let

ξ(θι) = arg max
ξ∈F

f(ξ; θι)

ϕ(θι) = f(ξ(θι); θι), (69)

then forθ2 > θ1 ≥ 0 it is easy to show that

ϕ(θ2) = f(ξ(θ2); θ2)
(a)
< f(ξ(θ2); θ1), (70)

ϕ(θ1) = f(ξ(θ1); θ1)
(b)

≥ f(ξ(θ2); θ1), (71)

where the inequality (a) follows from the definition off(ξ; θ)
and the inequality (b) results from the sub-optimality ofξ(θ2)
for θ1. Combining (70) and (71) we get

ϕ(θ2) < ϕ(θ1), (72)

which proves thatϕ(θ) is a strictly decreasing function ofθ.
As defined in Prop. 4, for someθ∗ such thatϕ(θ∗) = 0, the
decreasing nature ofϕ(θ) means thatϕ(θ) > 0 for θ < θ∗

andϕ(θ) < 0 for θ > θ∗.
Moreover, for someω ∈ [0, 1] we can write

ωϕ(θ1) + (1 − ω)ϕ(θ2) = ωf(ξ(θ1); θ1) + (1 − ω)f(ξ(θ2); θ2)

(c)

≥ ωf(ξ(θ1); θ1) + (1 − ω)f(ξ(θ1); θ2)

= ω
{

ξ(θ1)
T
Uξ(θ1) − θ1

(

ξ(θ1)
T
Qξ(θ1) + qT ξ(θ1)

)}

+

(1 − ω)
{

ξ(θ1)
T
Uξ(θ1) − θ2

(

ξ(θ1)
T
Qξ(θ1) + qT ξ(θ1)

)}

= ξ(θ1)
T
Uξ(θ1) − (ωθ1 + (1 − ω)θ2)

(

ξ(θ1)
T
Qξ(θ1)

+ qT ξ(θ1)
)

= f(ξ(θ1);ωθ1 + (1 − ω)θ2)
(d)

≥ ϕ(ωθ1 + (1 − ω)θ2)), (73)

where the inequality (c) is due to the sub-optimality ofξ(θ1)
for ϕ(θ2) and the inequality(d) is due to the decreasing nature
of ϕ(θ). Thus (72) together with (73) prove thatϕ(θ) is a
strictly decreasing convex function.
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