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Abstract—In this paper we study estimation in a power-

of realizing energy-efficient sensor networks with acceleta

constrained wireless sensor network, where the network is sensing capabilities. In this work, we study the problem of

divided into disjoint groups called clusters. The sensorsn each
cluster observe a random source that is correlated with the
sources being observed by the other clusters. Each clusterab

power-constrained estimation in cluster-based WSNs where
our objective is to minimize a distortion measure subject to

a designated cluster head (CH). Estimation of the sources is COnstraints on the transmit powers.

performed in two time slots: In the first slot, the sensors in
each cluster amplify and forward their noisy measurements @
the CH that forms a preliminary estimate of the underlying

source; and in the second slot, the CHs send a scaled versio

of their partial estimates to a remote fusion center (FC) tha

In recent years, for WSNs, several energy-efficient esti-
mation algorithms have been proposed under a wide variety
nof network models. For instance, [2]-[4] consider estiomti
based on quantized sensor observations. In [5], the focus

forms the final estimate of the sources. The CHs and the FC iS on designing a power allocation scheme where sensors

use minimum mean square error estimation rule. To minimize
the overall estimation distortion, we propose a power schading
scheme which allocates power to the sensors and the CHs sutije
to constraints on the transmit powers of the individual clugers
and the overall network. We show that when the sources are fiyt
uncorrelated or fully correlated then the solution to the power
allocation problem has a computationally favorable structire
and is amenable for distributed implementation. However, he
partial correlation between the sources leads to couplingfothe
optimization variables and the power allocation solution equires
centralized computation, which may be computationally expn-
sive. To this end, we propose an alternative formulation baesd
on an upper-bound on the distortion function, which leads toa
solution that shares characteristics of the fully uncorreated and
correlated cases. Simulation examples illustrate the eff¢éiveness
of the proposed power scheduling scheme.

Index Terms—Cluster-based WSNs, correlation, parameter
estimation, power scheduling, resource management.

|. INTRODUCTION

amplify and transmit their analog observations. The edtona
schemes in these works target the estimation of an unknown
deterministic parameter. The work in [6] proposed a power al
location scheme for estimation that also takes into accthnt
power consumed in estimating the channels from the sensors
to the fusion center (FC). The works of [7]-[10] studied powe
allocation in sensor networks with spatially correlatethdin

all these aforementioned works, individual sensors seait th
observations, via single hop, to a centralized unit whiaimf®

the estimate of the underlying source. This so-called aéntr
ized network topology is not favorable from the perspective
of energy-efficient estimation. Such a topology may alscepos
a challenge in medium access scheduling—specifically for
networks with large number of sensors—because it would
not allow spatial reuse of spectrum resources among sensors
In this regard, [11] investigated minimal energy prognessi
estimation in sensor networks and [12] studied estimation
under different network topological settings. In [13] arid]

PURRED by the ease of deployment provided by tHeower allocation schemes are proposed for estimation in
ireless communication paradigm, wireless sensor néfuster-based wireless sensor networks. The power sdhgdul

working is an emerging technology which finds application

igchemes in all these works target estimation of a homogeneou

many fields [1]. A wireless sensor network (WSN) consistgnknown deterministic parameter and neglect the effecatd d
of spatially distributed sensors that cooperatively mamitcorrelation.

physical or environmental conditions. The sensors are usuRecently [15], [16] proposed a power scheduling scheme
ally battery powered that can provide limited sensing, corfhat minimizes outage probability of estimation distomtim

munication, and computational functionalities. A sigrafit

cluster-based WSN observing spatially homogeneous source

research has focused on developing distributed data rocdtowever, therein, optimized power allocation to clusteadis
ing and cooperative communication strategies in the contd%Hs) is studied whereas power among the sensors in each
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cluster is distributed uniformly. The authors of [17] preed

an estimation scheme in cluster-based WSN in which they
target dimensionality reduction of the observations aheaid

and optimize power to transmit the compressed observaions
the FC. The authors, however, assumed ideal communication
channels from sensors to their respective CHs. This assump-
tion of ideal communication channels, though simplifies the
design, is not a reasonable assumption. In any real world
application, the communication channel from each sensor to
its CH will experience path-loss and receiver noise, and may



also be subject to multi-path fading and shadowing. In thgohibitive, in particular, for a large size network. In difoet
realm of energy-efficient estimation in sensor networks, i cut corners, we develop an upper-bound for the distortion
is imperative to account for the channel imperfections whédanction and then solve the optimization problem with that
designing a power allocation scheme. In recent past, sobmaund as a surrogate for the distortion. The resulting sslut
studies emerged about clustering and route optimization fhares favorable properties as exhibited by the solutichef
correlated data gathering in WSNs, for example, see [18}-[2uncorrelated case (and likewise the correlated case). fidie p
and references therein. However, these studies do notdensposed power allocation design, in all cases, shows significa
power scheduling for energy-efficient estimation. performance gain compared to a power allocation desigrdbase
The existing energy-aware or power-constrained estimation the UPA scheme. Moreover, energy efficiency comparison
algorithms ignore the effect of data correlation in sensavith the centralized network topology shows that the preplos
networks, while in this paper we consider a network that duster-based network scheme gives better performance.
partitioned into clusters, where each cluster observeparate Remainder of the article is organized as follows. Section
source albeit correlated with the sources being observed[ypresents the system model, formulates the optimization
the other clusters. The estimation of the underlying sauige problem, and introduces the adopted approach to solve it.
performed in two steps. In the first step, the sensors in ea®bction[dll outlines the solution for the case of uncorrdat
cluster amplify and forward their noisy observations toirthesources. SectidodV outlines the solution for correlatasrses:
respective cluster head (CH) that forms a preliminary esiim SectioIV-A and SectioR IVB present solutions based on the
of the underlying source. Subsequently, in the second #iep, exact distortion function and the upper-bound of the diiioy
CHs amplify and forward their partial estimates to a remotespectively. Sectiofi ]V outlines the solution for the case
FC that forms the final estimate of the sources. To form tlud fully correlated sources. Sectidn]VI presents simutatio
estimates, both the CHs and the FC employ the minimuaxamples. Finally, Sectidn M1l gives some concluding remmar
mean square error (MMSE) estimation rule. Communication
between the sensors in each cluster and their respective CH, 0
and similarly between the CHs and the FC take place over
orthogonal multiple access channels. We consider a hierarchical sensor network shown in Fig.
From the perspective of energy-efficient estimation, unifo [, where N spatially distributed sensor nodes are divided
power allocation (UPA) is not an optimal strategy due to tH&to N disjoint and non-overlapping clusters, indexed by
variability of the quality of observations at the sensorg t J = {1,..., Nc} such thatVy = >, ; N;. WhereN; is the
channel gains between the sensors and the CHs, the chanmehber of sensors in clustgr indexed byZ,; = {1,..., N;}.
gains between the CHs and the FC, the correlation structiWée assume number of clusters and distribution of sensors in
and the cluster sizes. Towards this end, in this work we pgepdhe clusters as given, and we study the problem of power
an adaptive power allocation (APA) design that takes intlocation for energy-efficient estimation The clustesserve
account all these factors in allocating power to the senssesiadom Gaussian sources,~ N (0, o2 ) forj € J, that are
and the CHs, and gives distortion performance better than gorrelated such th&tov{s;, s} = o, askpswsk, Wherepswsk
UPA scheme. Furthermore, compared to a centralized WSNecifies the correlation betweenands,, for all j andk in 7.
where all sensors send their observations directly to the F&pecifically, we assume that the sources are jointly Gaussia
the proposed cluster-based WSN performs better in termsdistributed. The observation at each sensor is corrupted by
estimation distortion. The power allocation design is bas@bservation noise, which is independent of the underlying
on an optimization problem where we target to minimize th&urcess;’s and the observation noises across sensors. The
overall estimation distortion subject to constraints @nsmit noisy observation at sensbm cluster; is x; g~ = 5j+n;,; for
power of the individual clusters and the network as a wholell j € J andi € Z;. Wheren; ; ~ N(0, 02 ;) denotes the
We formulate the power allocation problem as a convedbservation noise. By allowing the variance of the obsémat
optimization problem and outline its solution using a blockoise to vary across sensors, we can model a scenario where
coordinate descent method (BCoDM) based approach. observation channels from the sources to the sensors have
We show that for the case of fully uncorrelated (and likewisdifferent quality across sensors. In a special cas&Vpf= 1
for the case of fully correlated) sources the solution to tHer all j—that is, each cluster comprises only one sensor—the
power allocation problem embodies favorable structurenfrosystem model converges to the case discussed in [7]. For the
the point of view of computational cost and is amendabiame single sensor per cluster setups;if= s for all j (i.e.,
for distributed implementation. Specifically, we show thaa spatially homogeneous source), the system model corsrerge
the underlying optimization problem can be decomposed ino the case discussed in [5], [6]. In this work, however, we
simpler problems, which can be conveniently solved eith@westigate a general case, in whidfy > 1 for all clusters,
analytically or numerically. The resulting solution shosep- that encompasses [5]-[7] as special cases.
arable structure along the clusters as well as the sensorsThe estimation problem we study here essentially corre-
On the other hand, for the case when sources are neitbponds to estimation of a spatial random field, where we are
fully uncorrelated nor fully correlated the solution to thenterested in the field values in each cluster. As an example
power allocation problem needs to be computed numericalipplication, we can view the sensor network as deployed to
in a centralized way. The computational cost and the contabserve a Gaussian spatial random field. We assume that the
overhead associated with the centralized solution mayrbecointer-sensor distances within each cluster are small comlpa

. SYSTEM MODEL AND PRELIMINARIES



observations. By definin®y, := E[f;f]], we can writes; as
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where equality ¢) follows from the Woodbury identity or
the matrix-inversion lemma [23]. The associated mean squar
estimation erroD; := E[(3; — s;)?] is given by
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to the inter-cluster distances. The sensors in each clusidleredi; = on,, fori e Z; andoy, = oy, ; forje J.

being close to each other have strong internal correlatifpreoverc; ; = ¢; /oy,  forall i andj.

and therefore we can model the field within each cluster asLet 7 be defined as

homogeneous. Whereas the long inter-cluster distanceggstg .
heterogeneous correlation among the field values in diftere =2 _ <L 4 PijCi; > 3)
clusters. Note that by allowing the number of sensors to J z ¢i,jci,j0i2_j +1 '

vary across clusters we model the general setup, which gives

flexibility to observe the field in certain areas with high fife  Now, letv; be a scaled version &f asv; = D;573;. Thew;

We consider estimation on sample-by-samplebasis, Can be written as followso; = s; + v, for all j € 7, where
that is, we do not study temporal dependencies of the — 52( /%id {5 2isiiniity/@iifhi%ii ) Hare it is
. L . - i\ &% i€Zj i jCi 0n, tod ’
observations. In our future work, however, we will inveatig / I

j i, wi, g
i i ;o 52
such dependencies. The estimation of the sources is pembrrga'rly straightforward to show that; ~ N(0,57). Moreover,
in two phases. In the first phase of an estimation cycle, t

. is independent of; for all j and is independent af;, for
sensors in each cluster amplify their observations and th E

transmit to their respective CH such that the receiveby with ; as the equivalent observation noise. Expressing

observations arey; . — /6 ¢ (s . . for v; simplifies ensuing fqrmula’Fion of the _fin_al e_zstimate at
: Yig 0 Cii (55 & mig) + wig the FC and thereby helps in solving the optimization problem
al j € J andi € Z;, with 7; = Z; — {N,}. Where .
¢;; € [0,00) is a scaling or an amplifying factog; ; is in later development.
! ’ " Jn the second phase of the estimation cycle, the CHs amplify

gain of the channel between the sensor and the CH, an Nt th “valent ob Hans to the FC h
Wy ~ J\/(O,crﬁj”) is the receiver noise. The noise is assume ransmit the equivaient observatiahs 10 the sue

to be independent of; andn; ; for all i and j. Moreover, that the received observations ate= \/1;g; (s; +7;) + w;

the noise is assumed to be independent (of the noises) acf8§sal_l Jf Y?]/herﬁ ¥ EI Lo’too) IS tin ampllfyélntg falé:éor,gj d
sensors in all clusters. Here without any loss of generaliﬁ/ gam;)/ 0 e2c "J‘.””teh etween the _gHar: h eFC ' a;:_ h
we have assumed the sensdi as the designated CH of '/ "~ (0,0y,) is the receiver noise at the FC, whic

g
Ni ez,

k # j. We can viewy; as an equivalent observation at the

cluster j. The designated CH for each cluster can be a fixéd independent ofs;, 9;, and wy, ffr all j and k W';h
sensor or it can be dynamically selected from among t # j. By definingz = [21,...,2n]" 8 = [s1,- ., ]
sensors in that cluster [21]. Using matrix—vector notatioe = diag (Vigi -, \/ch:,:QNC)’ andr = [Viigids +

can write the received signals at CHin a compact form @1,-- - /¥N.GNIN. +wN] , the received observations at
asy; = bjs; + f;, wherey; = [y1;.. ,yNj,j}T, thg FC can be written in a compact formza% Hs+r where

b. _ [/ B1381300 -2 /BN, 138N, 15 1}T, and 'S the und_erlyln_g source vector to _be estimated. Now based
f?: [/Pryerm +w ‘ ¢J . -é] — -y on the received signals ar_ld employing the MMSE estimation
J LiTLg L3 T gy s N =L ENG = 1 TN =1 rule, the FC forms an estimate of the source vector which is
WN, 155N, 5] - given by

Employing the MMSE estimation rule [22], the CH . . s
forms an estimate; of the sources; based on the received $=Rs,R,'z=RH (HR.H' +R) 'z (4)



whereRg;, := E [sz”], R, := E [zz”], Rs := E [ssT], and 1, s Vi <1, andziezj Bi; <1, we can write

R :=E [rr”]. By defininge := s — § as the estimation error

vector, we can write its covariance in the following form: ;= %, VjeJ,
05, + op:
R. = E[EET} =R; - R,,R,'RT bij = %7 VjieJ, i€l
T (S ST L B lan T T5; T 00 l
=R; - RH' (HR:H' + R) HR{ ’ ’

Here¢;’s, v;'s, andj; ;'s respectively decide the power split
among the CHs, the clusters, and the sensors in each cluster.

) o ~ With this we can write the problerfil(6) in the following form:
where the last equality follows from the matrix-inversion

minimize tr (R
lemma. @, £;20,7;20, Bi.; >0, Vij (Re)

subject to a € T, Zgjgl, Z’ngl,

= (HR'H" +R;Y) 7, (5)

jeg =
A. Formulation of the Optimization Problem Z Bii<1, vi<+9) . Wied ()
] — & 1] = Imax> )
In order to allocate power to the sensors and the CHs we €15
consider the following optimization problem: where T = [ao, 1), ap = max{0,1 — Pmax/P}, %(ggx _

. min{1, gbg{&x/Pt}, andR. is given as
minimize  tr (RE) .
V320, #1520, V4] R. =R, - R.H” (HR,H" +R)  HR!

subject to Zj (wj (Ufj + &JQ») + ZI Gij (cr?j + O'Zj)) < P, _ (HRleT + Rs—l)*17 ®8)
Jje i€Z;
S 05(02, +53) < Yina, with
jeJ ) H:dlag (\/(1_O[)Ptglglv"'v\/(l_O[)Pthcch)a
S ij(02 +02) <o, Vied,  (6)  R=diag((1-a)Pé&giod+oi+02,...,
i€

(1 — a)Pbn.gn.ox, + 0N, + 0oy )-

where we target to minimize the sum of mean-square est¥here, for allj € 7, g; = gj/aij and
mation errors of the underlying sources. [h (6), the coirstra .
on the total network power (first constraint) enables a faig2 _ <L i Z aPyy;Bijci > ()
comparison between the networks of different sizes. More-’ 012vj ez Ofpmﬁi,jci,jazj +Ui2,j + Ugj
over, putting a cap on the total network power consumption
conserves energy, which makes sense from the viewpoint Proof: See AppendiXh. O
of global energy efficiency and to realize green information The alternative formulation in[X7) has linear constraints
and communication technology [24], [25]. The second ar&hd the constraints are independent in the sense that each
third constraints of the optimization problem limit inteluster constraint function depends on a separate set of optiroizati
interference and interference with any other network in theriables (namelyy, &;'s, v;'s, or 3; ;'s). The independence
neighborhood, which is important from the perspective @ff the constraints is a nice property that allows us to divide
spatial reuse of the spectrum resources. Depending on the problem into subproblems, where in each subproblem we
application of the WSN, some clusters may be located @@n optimize over a separate set of optimization varialass,
critical areas and it may be required to keep those clust@tlined in the ensuing development. There we shall see that
alive for sufficiently long time; this observation gives #mer each of these subproblems is jointly convex over the given se
motivation for putting cap on total transmit power of thedf optimization variables.
individual clusters and the CHs.

Note that the optimization variable’s and¢; ; are coupled B. BCoDM based Algorithm for Power Allocation
in the constrai_nts._ This coupling 01_‘ tr_lel variables and the fa e solution to the power allocation problerdl (7) will
that the optimization probleni}(6) is jointly non-convex ovepe ghtained using a BCoDM based approach, which cycli-
the optlmlzau(_)n variables make the problem difficult tov&_aol cally/iteratively minimizes the cost function (R..) with re-
To this end, in Prop[]1 we reformulate the problem in agyect to (w.r.t.) each set of optimization variables sutijgthe
alternative form that bears favorable characteristic&@shall  ;55ociated constraints while the other optimization e

see in the subsequent development. are held fixed. Specifically to solvEl(7) do the following:

Proposition 1: Let a € [0,1) such thataP; power is 1: Initialize o, £;'s, v,'s, and3; ;s in their respective feasible
expended in all clusters on forwarding observations from th region.
sensors to the CHs and — a)P; power is expended on 2: For giveng;’s, v;’s, and3; ;'s, find o by solving
forwarding observations from the CHs to the FC. Moreover, o
assumings; > 0, v; > 0, and; ; > 0 such thaty._ & < minimize. tr (Re) . (10)




3: For givena, v;’s, and j; ;'s, find ¢;'s by solving A. Optimization ofx

minimize tr (Re) subject to Z & <1. (11) For optimization ovekx we need to solve the optimization
SECIN ier problem [ID). To this end, lef(«) = tr (R.). The function
f(«) is strictly convex ovefl” and consequently has a unique
global minimizer in7, see AppendiB. The convexity of
H;ii;ign\ige tr (Re) f(c) overT means the following condition is both necessary
e _ and sufficient fora* € 7 to minimize f(«) over7 (cf. Prop.
subject to » v, < 1,7, <l VieJ. (12) 212in[28)):

4: For givena, &;'s, andj; ;'s, find ;'s by solving

jeg
5: For givena, ¢;’s, andv;’s, find §; ;s for eachj for j € J 0f(a )(a —a") >0, VaeT. (24)
by solving da
_ . N For a* # ayp, the condition[I¥) reduces @f (a*)/da = 0.
%“?12%“\3? tr (Re) subject to Z Pij =1L (13) An explicit solution fora* is intractable. However, to find

) i_ezj ) «*, we may resort to numerical methods such as line search
6: Repeat stefd 2 to stk 5 until there is no appreciable d&eregyethods for one-dimensional minimization, for example th

in the objective function. ~ Golden Section method [28]. Thanks to the convexity of)
The given algorithm is guaranteed to converge to a minimugyer 7, the convergence of these numerical methods*tds
point of the optimization problenf](7) as stated next. guaranteed.

Proposition 2: Let ~ be the iteration index of the B(((.)?)ODM Remark 1:Note thatf(e) = 3¢ fi(), with f;(a) =
algorithm. For any feasible initialization point(®, £, 9 95, (1—a)Pi;g; '
7§0)’s, and 51'(3') 's, the iteratesy(%), 5;“)’5, 7§”)’s, and 51'(3')’5 USj_rr?j +02 (I—a)P&g;+1° _
generated by the BCoDM algorithm converge monotonicalfjusters where factof;(«) depends on parameters concerning
to a minimum point of the probleni(7). the clusterj. As a perspective on implementing the solution,

Proof: The proof is based on the result of Prop. 2.7 i;he FC broadcasts an initial value @fe 7 to all CHs. Then

[28], which proves the convergence of BCoDM provided th82ch CH computeg; () and/ord fj(a)/da (as required by
minimum in each of the optimization probleniSX10) througff'® numerical method) and sends to the FC. The FC then
@) is uniquely attained. Towards this end, in the ensuirtfpdates the value ot and broadcasts it to the CHs. This
sections, we shall prove that each of these subproblemdPfcedure is repeated until the stopping criterion is Badls
jointly convex over the respective set of optimization aates

and_thus has_a unique minimum. The m_in!mum can ke Optimization of;’s

obtained by using tools from the convex optimization theory

With that we conclude the convergence proof of the BCoDM The optimization of;'s is based on the probleri{11). For
algorithm. - this purpose, as shown in AppendiX C, the functiorfR.)

& decreasing w.r.€;'s and the given optimization problem is
jointly convex over{;’s. The convexity of the problem means
the distortion functiortr (RE) decreases monotonically fromthet. Kalr.l:Sh'fltjr?n'Tufkfr (KfKT),cor;%nmgslalre stl;]fﬂc:z:;for
one iteration to the other of the algorithm. In the seque(?,p imality of the solution for¢;’s [26]. Solving the

we outline solution of the optimization problem using thgondmons we get

has a separable structure along the

Given that each step of the algorithm minimizes a conv
function by solving a convex optimization problem. Therefo

partitioning approach (of diving the problem into subpeshk 1 (1= a)Pg; +

via BCoDM) for three distinct cases: Where the underlying; = ——— (C,g 27;% — 1) . V4, (15)
sourcess;'s are uncorrelated, partially correlated, and fully (1 - )Py, ’ (USj +Uj)/\

correlated.

where (z)* = max{0,z} and X\ is a Lagrange multiplier
I1l. UNCORRELATED SOURCES associated with the sum-constraint. Because the objective
function is a convex decreasing function, therefore the op-
timum solution is at the constraint boundary, that is, th@-su
constraint is always active. Consequently the multiplier
should be determined so that it satisfies the constraint with

For uncorrelated sources’s, the covariance matriR is
diagonal, that isRs = diag (02,,---, 02, ). Inthis particular
case, we can write

4
tr (Ry) = Z (0—2 O (1 - )P g, ) equality, that is,y". - & = 1 which gives
€) — Sj 2 _ .- :
= o3, +oj (1-a)R&g;+1 ] ,
The uncorrelated case is of particular interest because in Zkel{ \/(1704)Pt;:(a'2 o)
this case the solution of the problenis](10) a](13) can be A= - et , (16)
implemented in a distributed way in a certain sense. We use 1T+ ek —a)Pigr

the solution proposed for this case as a baseline and later on

show that even in case of partially and fully correlated sesy _ (1—a)Pgjot

the optimization problems could be solved by reverting & tvherex = {J € j‘w > 1}' From [I$) and[(16),
techniques outlined under the uncorrelated case. it is fairly simple to show that the solution f@r's converges



10?

to

02_ 2 -1 10!
lim ¢ = (Z Os > . (17)
keJ

Pemeo gj(02 +07%) \/9r(02 + o)

Remark 2:The structure of the solution fof;’s is same
as the power allocation solution in [5], [6] for estimation
in networks comprising single sensor per cluster and all
observing the same source. From an implementation point of opimaly
view, the computation of;’s can be done via a coordination o
mechanism where the FC determines the value\ofnd y ‘ ‘ ‘ ‘
broadcasts it to the CHs, which then calculgis by (@3). i 0 102 107! 0° 10 10

10log(Py) = 25

10log(P,) = 30

10log(P,) =

0w p————— e —— ==

107!

Function Value[ 3. ; % ()]

Note that for given\ and (1 — «a)P;, the expression[{15) ot

depends on the local information available at each CH.  Fig. 2. Variation OfZJGJ 75 (1) as a function ofu. Ne = 16, N; =
NJ1+40']=O']- aj:’Jl—i-Olc”_lanng_lfor
Jj € J andi eI with No = 0 and&2 = 0. « = 0.5, §; = 1/N,, and
Bij = 1/(N; 1), i, j. log(Pr) = logy o (Fx).

C. Optimization ofy;'s

In order to optimizey;’s, we have the optimization problem
given in [I2). On the same lines as in Appenfix C, we caran be given by
show that the objective function is decreasing wy,ts and

the problem is jointly convex over;’s. In the optimization Qp) = Igg(?l@?e Al 7ve 1)

problem as we are minimizing a decreasing function, there- B

fore, the optimum solution is always at the boundary of the z;mlﬁnfmze A () — o (19)
Jje

constraints set. In the optimization, one of the followihgee
scenarios may arise. Firstly,E 7 %(n;x < 1 then the sum- and the dual optimization problem can be written as follows:
constraint (i.e. dey o0 g 1) is inactive and all individual maximize Q(s). (20)

constraints (i.e.;y; < A, for all j) are active. In this p#20

particular case, the optlmlzatlon problem is trivial andl aFor the dual objective(1:), we need to findy,’s that minimize
clusters simply transmit with,; = "ymax for all j. Secondly, if A(~,...,vn ;). In this regard, for giveru, () can be
Yjes ~+kx = 1 then the sum- and aII individual-constraint®btained by solvingV. separate problems as follows:

are active and we simply havg = 'ym&x for all j. Finally,
if 27€j 'ymax > 1 then the sum-constraint is always active
and some of the individual-constraints may be active whifer j € 7. Note that, [Z2IL) corresponds to the clustewhich
others remain inactive. To solve the optimization problem ican be solved by the corresponding CH using some line search
this last case, we proceed as follows: Initially, we igndre t algorithm for one-dimensional minimization.
individual-constraints and solve the problem with only the The optimal dual variable: can be obtained by finding
sum-constraint. Afterwards. later in this section, we séladw  such thaty" . ;v; (1) = 1 as illustrated in FigJ2. This can be
how to incorporate the individual-constraints into theusioin  done by a one-dimensional numerical search, for instarice, b
obtained with only the sum-constraint. sectional search method, or can be done using gradienttasce
For solution to the problen{12) without considering thenethod that leads to the following updation rule [28]:
constraints on individualy;’s, we propose a primal—dual i
type algorithm based on the Lagrangian dual-decomposition p(mt) = [M(T) +6 ( 27 ) 1)} ’ (22)
approach [27]. For this purpose, we can write the Lagrange
function associated with the problem (called the primabpro
lem) as follows:

vj(p) = arg min Aj(v;, 1) (21)
v >0

jedT

where T is an iteration indexy is a positive step-size pa-
rameter, andy; (1(7)) is the solution of A1) for given.(™).
Because the primal problem is convex having linear comgai
ZWJ B 1) and is feasible over the domain of the problem thus the
problem satisfies the weak Slater's condition for constrain

A(Wla"'a/chv )_tr +M(
JjET

_ Z [02 o, (1 —a)Pi&g; n /W} .y qualifications. Given that, the primal variables(;(7))’s and
= Y02 +o? (1—a)R&gi+1 J " the dual variableu(™) converge to their optimal values as
T — oo, and at convergence the duality gap is zero [26],
=D A0 — (18) [2g].
ieJ Now, to solve [IR) including the constraints on individual

where 11 is a Lagrange multiplier (also known as the dudls'S: We adopt the followmg procedure:
variable or the price value) associated with the constraini: Set. = 0 and assumat =1lsuchthad_; ;v < 'yt( ),
Z]EJ v; < 1. The corresponding Lagrangian-dual function where. is an iteration index.



i Solve the optimization problem as outlined [D118) Eal(22for ¢;’s.
ignoring the individual constraints.

iii. Construct the setC = {j € J|y; > Yax}, and for all ol + 0l 1 : Vi, (25
le L sety, = %(,Qm. " aPthCi,jUﬁj - @)
iv. Recalculate the sum-constraint aé”l) = vt(L) -
(1)

. Zleﬁ Ymax- (141) ) o ZKE.A]‘ # aPyyjck.j
v: Recalculatey, for all r € RU“T1) as in stefdi with sum- = SR B , (26)

constrainy, c i v < 1Y, whereR(H) = R\ L4+ ea, a;;%

J tViCr,i0 k5

£ with R(®) = 7. Note thatR() \ £ means all elements
of R that are not inC.

S | aPiyjciy
vi: Set. = « + 1 and repeat stefidiii to steg v until allWhereA; = {i € |z, > 1} For B — oo, the

2 2 .
95, +Ui,j)77]

constraints are satisfied. B:,;'s converges to
The _solution given in_[II]8) to_ELIZ) with only th_e sum- ESpCy o\ !
constraint, and the solution obtained by the precedinggsroc  1im g, ; = s Z 8 417J .@n
dure incorporating both the sum- and the individual-caists Pr—oo €% \ ez, €39 ;

are optimal. The optimality can be justified by the convexity
of the underlying optimization problem and the decreasing Remark 4:To implement the solution, the CHdetermines
property of its objective function w.r.ty;’s. the Lagrange multiplier); and broadcasts its value to all

Remark 3:From the viewpoint of implementation, the so-S€nsors in that cluster. After knowing (as well asaFy;),
lution based on the Lagrangian dual-decomposition approate sensors can calculate;’s by (Z3).
as outlined here, can be computed in a distributed fashitn wi
the assistance of the CHs. Specifically, the FC first brodslcas
an initial price value, that is, the value pf This value is used
by the CHs to calculate;’s by solving [Z1). Note that for CH  Herein we outline solution to the optimization probledh (7)
j, the problem[(A1) entirely depends on the local informaticar the case of correlated sourcess. This section consists
concerning that cluster. The new’s are then sent to the of two subsections. In the first, we solve the optimization
FC so that to update the prige This updated value is thenproblem with the exact formulation of the cost function
broadcasted to the CHs. This procedure is repeated until th¢R ) given in [8). The functionir (R.) is not separable,
7;'s and 1 converge to their optimal values. because the covariance matrRRs is not diagonal in this
case. That is why, the resulting solution for ¢;’s, v;'s, and
Bi.5's (given in Sectior IV=A) does not admit a distributed
implementation, and may computationally be expensive as
the solution has to be computed numerically in an iterative

For optimization off3; ;'s, we need to solve the problemfashion that invo!ves matrix computati(_)ns. In order to addr
[@3). In this case, the cost function(R.) and the constraints these concerns, in the second subsection, we develop anuppe
decouple along the clusters. Consequently, the problgin (Pgund fortr (R.) and use this as a cost function to solve the
decouples intaV, independent problems, one for each clusteproblem eqrefOptimizationProblem-Il. The resulting stin

Here it is sufficient to consider the following problem foicka is amenable for distributed implementation and carrieshmuc
jed. of the favorable properties as exhibited by the case of uncor

related sources. In what follows, we ignore the constraints

IV. CORRELATED SOURCES

D. Optimization ofg; ;'s

minimize o2 subject to Z B <1 23 < A for all j. Nevertheless, the_se constrz_;lints can
520V ) : , = similarly be incorporated as we have discussed in Section
e =T

which is equivalent to
A. Exact Solution

minimize — Z P15 ; ;
Giizovi aPyBijci ot + 0%, + 02 _Here, we solve the p_robletﬁ](?) with the exact cost function
i given in [8) by employing the BCoDM based approach out-
subject to Z Bij <1, (24) lined in SectiofI=B. Unlike the uncorrelated case, thestioh
= outlined here has to be computed in a centralized way because

the objective function does not support a separable streictu
where, on the same lines as Appenix C, we can show thatl) Optimization ofa: The optimization probleni{10) has
the objective function is a decreasing function and the lgrab a unique global minimization point, as shown in Appendix
is jointly convex overf; ;'s. The optimal solution for3; ;'s The corresponding optimal can be found by using the
is outlined in the following, which is obtained by solvingeth nhumerical methods for one-dimensional search as disclissed
associated KKT conditions in the same way as in Sefionlll-BectionI=A.



2) Optimization of&;’s: The objective function of the optimization problem:
problem [I1) is a decreasing functiongffor all ;. Besides, L
the problem is jointly convex oves;’s, as shown in Appendix — aez ¢, 50 0120, 4,50, T
B. As the objective function is a convex decreasing fungtion _ . .
therefore, the optimum is at the constraint boundary, that jsubject to Z G=Lh Z %<1 Z B < 1,95, (31)
the sum-constrair} ;. , £, < 1 is always active. Moreover, e7 €7 €L
the convexity of the problem means the following conditionghere we have ignored the constraints on individygb.
are sufficient for optimality of the solution fag;’s [28]. Nevertheless, these constraints can be incorporated in the
solution by the procedure outlined in SectlonTlI-C. Notatth
€,Vj =arg min tr(Re)+ )\( Z{j _ 1>’ (28) in the special case aoN; = 1 for all j—that is, where all
£;>0,Yj i< clusters comprise one sensor each—we have 0, v; = 0,
and 8;; = 0 for all 4 and j. In this particular case, what
A>0, Z & —1=0, (29) remains to be optimized i§;’s and the optimization problem
ieT @) converges to the case studied in [8]. For the general
where \ is a Lagrange multiplier. The optimdl;'s can be case, in the sequel, we outline a solution to the problemh (31)
obtained by numerically solving{R8) for given(e.g., using employing the BCoDM approach of Sectibn1l-B.
the gradient projection methods [28]) and findikg> 0 such 1) Optimization ofa: To minimize ~Y" w.rt. « it is
that Zjej ¢;(\) = 1. To find the optimal\, we can use sufficient to consider minimization of the denominator of

the bi-sectional search or the dual-ascent method descibe Y—the numerator does not depend @nAssumingf;(«) =

H 012--5-03.
Sectiond=C. §jgj\I/j ({jngjz + [ )Iét) and f(a) = Zjej fj(a)’ the

3) Optimization ofy;'s: Forv;'s, the optimization problem qimization problem for can be written as follows:
to solve is[(Tll), where (as shown in AppenHix F) the objective

function is decreasing w.r4; and the problem is jointly con- minimize fla). (32)

vex overv;'s. The optimaly;’s can be computed numerically ) _ _ )

by a similar procedure as proposed fols in SectionIV-A2. We can solve[[32) using one-dimensional numerical search
4) Optimization ofg; ;’s: As shown in AppendiT5, for methods. As the functionf(«) decouples along the CHs

eachj, the optimization probleni{13) is jointly convex and théhdicating that the numerical algorithm to find can be im-
cost function is decreasing over,;'s. Once again, to solve plemented in a distributed manner similar to the uncoreelat

case.
2) Optimization of¢;’s: For optimization of¢;'s, we pro-
ceed as follows. By defining

T
§=1[&,.. ¢,
dQ - dlag (g%\lllo'%a cee 7912VC\IJNCO'JQVC) ’

the problem we can use the procedure of SedfionTV-A2.

B. Approximate Solution

In the ensuing development, to solve the problEm (7) for the
case of correlated sources, first we develop an upper-boun

for the objective function and subsequently we use this uppe 1¥1(of +02)) gN YN (oF + o—fNC) g
bognql as a surrogate for the objective function and solve the 4 = 1-—a)p, ' (I—a)P, ’
optimization problem. - -
Proposition 3: The trace ofR. can be upper bounded as "~ 9193, ’g];C\IJNC] , U=uu,
follows: g=Ig1,....9n.) . G=gg’,
Q=QoG+Q=R.0(R{Rs)0G+Q,
tr (Re) < (Z a) -, (30) oo (R R
J .
jer we can writeY as follows
T
where T = U ) (33)
, ETQE +qT¢
Y _ (2.7'67 gjgj\l/j) Now assumingl := [1,...,1]", the optimization problem for
~ (02402 )\ £;'s can be written as
e €.jg.j(2key §egr Qi + &9V 075 + W) !
ma?igglize T subject to 17¢ =1, (34)

Q=Rso(RIR.), ;=) RZ,, = Cov{s;, %}
keT keJ where we have replaced the inequality constraint with etyual
in which the operatord’ denotes the Hadamard or Schui® exclude the case in whlch_ the objective function is un-
; bounded over the feasible region of the problem.
product of the matrices. N, T .
_ , Let 7 = {{ € RNe|¢ >0, 17¢ =1} denote the feasible
Proof: See AppendifH. ~ region of the probleni{34). Note thaf is a compact convex
Now we consider the optimization problefd (7) where weet in RV (the set of N.-dimensional real numbers). It is
target to minimize the given upper-bound on the distortioeasy to show thall: and Q are PSD matrices, which means
For this purpose, it is sufficient to consider the followinghe numerator and denominator ®fare convex functions of



. Thus, the problenl{34) is eonvex—convekype quadratic where the objective and the constraint functions are canvex

fractional programming problem—for a detailed classifmat and the problem[{40) is a convex QCQP problem. Fhe,

of the types of fractional programs and their solution mdthoand 7,,,., in @J) are solution to the following problems:

see [29] and references therein. To solvé (34), in whatvid|o . o -

we develop an algorithm based on the parametric program- Tmin = m”gg}lzef U¢ = TRze (u¢)

ming approach, which is a powerful scheme for solving the

fractional programs.
For6 >0, let

2
- N T - .. T\ 2
Tmax = mag(érfx_nzeﬁ U¢ = magcérfr_nze (u {) ,
where we can show thaty,i, = (minf{u;,...,uy })? and
f&0)=¢"06-0(€"Q¢+q"¢) (35)  Tmax = (max{uj,...,un,})? That is, the corresponding

be a parametrized function associated with the prob[Eh (339!ution for &;'s in both cases is like thevinner-take-all

Next we have the following proposition, which is based ofCliCy—meaning only one of th;’s is equalto 1.~
the well-known result by Dinkelbach [30]. 3) Optimization ofy;’s: For optimization overy;’s, it is
. ) . . sufficient to consider the following problem:
Proposition 4: For givend, define fiic ider the followi bl

e 2
() = maximize f(;0) (36) minimize Y079,V (1+ (1 - )P g5)
(eF " jed
with the corresponding optimdl vector as subject to Z v <1, (41)
0) = :6). 37 ieJ
§(0) = argmax f(¢;9) (37)

where we can prove that the objective function is decreasing
If there exists some?* > 0 such thate(6*) = 0 then w.r.t. ~;'s and the problem is jointly convex over’s. More-
£ = £(0*) is an optimal solution of the probleni{34) ancbver, note that the objective as well as the constraint fanst
the corresponding optimal value 68 = T (£*). are separable along clusters. Consequently, the profi@n (4
Proof: See Appendifll. O can be solved using the Lagrangian dual-decomposition ap-

Proposition 5: The function (6) defined in [@B) is a Proach outlined in Sectimc. S o
strictly decreasing convex function 6f Moreover, forg* as ~ 4) Optimization off; ;'s: For optimization ofj; ;'s, it is

defined in Prop[l4, following holds suffir(]:i'ent}o consider the following optimization probleior f
eachj € J:
e(0)>0,v0 <0, and (@) <0, V0 >0". (38)
minimize UJQ- subject to Z Bi; <1 (42)
Proof: See AppendiflJ. O PigoVe i€,
Based on Profll4, the optimization problefnl(34) can Rgnose solution is same as given [I(25)Eal(27) under Section

solved using the following iterative procedure. (11=)]
i: Set, =0 and initialize¢) e F.
ii: Computeg(+1) =71 (¢@).
iii: Solve the following optimization problem to obtain the .
global optimal solutiore“+1): In the case of fu!ly correlated sourcess, thatis,s; = s for _
all 7, the sensors in all clusters essentially observe a spatiall
(39) homogeneous source. In this case, the mean squared estimati

distortion D, := E[(5 — 5)?| at the FC based on the MMSE
iv: If |f(£0TD;00T1)| < 6 for somed > 0 then terminate; estimates of s can be written as

else set. = .+ 1 and go to steplii. ) . P 1
This procedure is guaranteed to converge to the optimal D, = <_2+ Z 1-oa) ;§J932 2) ,
solution of the problem[{34) provided the proble[ml(39) can 95 eg (1 — )& 907 +0j + 03
be solved [30]. In this regard, although the feasible region Whereaf is given in [@) witho? — o2 for all j. Now we

' i IO i

IS a convex set, th_e functiofi(¢; ") is not concave. Thus, consider the optimization problerfll (7) with the cost funietio

the problem [[3P) is a non-concave maximization problem N
: ; . . X tr (R.) replaced byD.. The optimization problem can be

wherein many different local maxima may exist, which are

different from the globally optimal solution. In what folis, solved by the BCODM algorithm outlined in Sectién_1)-B.

we show that the problerf{B9) can be reformulated as a ConVSe|)r(n|Iar to the uncorrelated case, the algorithm to find optim

quadratically constrained quadratic programmingCQP) « can be implemented in a d_istributed manner. To optimize
problem, which can be solved by numerical methods fQyer o, We can prove the existence and uniqueness of the
example’ the interior point method [26] * “optimal «; and we can find the optimal value using the

By introducing a slack variable = ¢7U¢, we can write approach given n S.ectloE[IHA..For 0pt'm§-l" S, We can
@3) in the following equivalent form: show that the’ objective fl_mctlon is <_jecre’asmg anc_i is jpintl
convex overg;’s. We can find the optimad;’'s by solving the
B ~rgirrii£nize - o) (§TQ§ +qfe+ e) -7 KKT conditions. The resulting solution has same structiwe a
e . in the uncorrelated case in Sectlonll-B. To optimizés, we
subject to 1°¢ =1, UL —7 <0, (40)  can show that the Lagrangian dual-decomposition approach

V. FuLLY CORRELATED SOURCES

s ,9(L+1) )
maimize f(¢;6")
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Fig. 3. Network setup for simulation. Fig. 4. Estimation distortion increases with increasing and decreasing

Ymax for 8 = 5000.

outlined in SectioIII=C can be employed. The solution for ) , )
optimal 3; ;'s comes out to be the same as outlinedid (25) It(f);e dlst;;mce bet_vxeen thg sen&:oand CHj. We assume
Z2) under SectioRTIED withy2, = o2 for all ;. O, = 0y, ; = 107" for all < and .

If each cluster only contains one sensor, thatNg, = 1 We compare the distortion performance of the proposed
for all j thena = 0, v; = 0, and3;; = 0 for all i and j; APA design with a UPA scheme. In the UPA scheme we
and what remains to be optimizedgss. In this scenario, the havea = au = 0.5, § = &u = 1/NC'_ V= Tu = 1/Ne,
optimization problem considered in this section converges 21d Jij = Bu; = 1/3(NJ' — 1) for all 7 and j. The results
the case studied in [5], [6]. Besides, foF, = N, v; = 1/N., are averaged over0° random deployments of the sensors

ando?, = o2 for all 7 and j the problem converges to theln €ach cluster. Unless stated otherwise, in the figures the
oase afscussned in [13], with the exception of how to findis estimation distortiontr (R.) is normalized by the number

we have outlined herein—[13] does not explicitly state how to_f undgrlyln_g sources being estlmat_ed. '_I'he purpose of the
find o and does not delineate on the associated convergefitBulations is to observe how the distortion performance of
issue. Thus, as a conclusion, our proposed framework mod&§ APA scheme varies witth; for different values ofag

() ;
the general case which includes related works as species ca@nd 7max, and compares with the performance of the UPA
scheme over the degree of correlation among the sources.

Furthermore, the simulations show how the distortion acde

by the approximate solution matches with the exact solution
In order to evaluate the performance of the proposed powerF different levels of correlation among the sources. The

allocation scheme we consider a WSN comprisiig= 16 simulations also compare the distortion performance of the

clusters with sizesV; = N; ; +4 for all j € J with N, = Cluster-based WSN with a centralized WSN. In the figures,

0. In each cluster, the sensors are randomly and uniformig(%) = logyo (1)

distributed as shown in Fil 3, wheeg throughc;¢ denotes  Let %(I{QX = Ymax for all j. Increasing the value afy, and

the clusters. The correlation between the underlying ssuralecreasing the value of,.x reduce the feasibility region of

VI. PERFORMANCEEVALUATION

of clustersj andk is modeled as the underlying optimization problem and consequently the e
e, /0 _ timation distortion is expected to increase. This is ilattd in
Psjs =€ T NG ke T, Fig.[ 4. When the value afj, is increased, it means there would

Sbe less power available to transmit the partial estimates fr

hth CHs to the FC. In this case even though CHs may have
very good estimate of the sources, however they will not have
g@gugh power assigned to reliably transmit those estimates

whered; , denotes the CH-to-CH distance between clusfer
andk; andf > 0 is a scale parameter that controls how fast t
correlation decays with distance. We asswf@je: 1 for all
j. Moreover, we assume that the observation noise varian ;
(i.e.,o—fj’s) are uniformly distributed between 0.1 and 10. Th%0 the FC. On the other _hand, whep,ax is reduced, .there .
channel SNR from sensarin clusterj to the FC is modeled would be_ less power avallab_le to the SENsors to deliver th_e|r
7202 2 H 5 observations to the CHs, which would deteriorate the qualit
as g;; = |hi7j| /d/i,jawj’ Wherehi,j ~ CN(O,l) and di,j . . . .
denotes the distance between the sensorcluster;j and the gl;tti;eat%zrtcl:iln?r?gﬂzsttec? t?]teﬂi]necrcézsé thhgeéigfgﬁtf%;he
FC. For clusterj, the CH s selected by the following rule: distortion at the FC. Unless stated otherwise, in the sulesgq
i* = argmax{g; j,i € Z,} simulation examples, we assumg = 0 and~y,,.x = 1, which
‘ effectively means we only consider constraint on the trahsm
such thatg; = g¢;- ;. For CH selection, other criteria arepower of the overall network specified .
also possible, for instance, in each cluster select theosens Fig. [@ plots and compares the estimation distortion of
with largest remaining energy [21]. We also hawg; = the APA and the UPA schemes as a function &f for
\hi j?/d3 ;o0 s where by ; ~ CN(0,1), and d; ; denotes different levels of correlation among the underlying sesic
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Fig. 5. Estimation distortion comparison of the APA and theAlkchemes: Fig. 6. Impact of different optimization variables on esiiion distortion
Case-1) uncorrelated sources, Case-2) correlated sowitte$ = 500, Case- for § = 5000.

3) correlated sources with = 5000, Case-4) correlated sources with=

50000, and Case-5) fully correlated sources.

According to the assumed model, the correlation among the
sources increases as the valud aficreases. The figure shows
that the proposed APA scheme gives distortion performance
which is better than the UPA scheme and the performance
difference increases as the level of correlation incredadke
perspective of efficient utilization of energy, this obsgion
illustrates the advantage of the proposed power allocation
scheme. Besides, we can see that the performance of the APA A
scheme monotonically converges to the UPA schemd’as

increases, which is typical of the power-constrained eztion . T e ———
schemes. Network Transmit Powerlp log(F)]

Estimation Distortion {r {R. }/N.]

In the proposed APA scheme, even optimizing over sonf@. 7. Impact of different optimization variables on esdtion distortion
or anyone of the variablesa( &’s, 4;'s, and 3;’s) may r¢=5000.
give significant performance gain. This is illustrated irg.Fi
and Fig¥, where the APA scheme means all variables are
optimized and the UPA scheme refers to the case of all unifogjerhead versus performance gain with respect to the UPA
variables. The other schemes refer to mixed situations ath ¢cheme.
variables optimized but the ones indicated, which are umfo L , . .
The figures underline the relative importance of different N€Xt we compare the estimation distortion achieved by
optimization variables and their impact on the distortibor the APA s_chemes pr_opo_sed un_der the exact solution and
instance, Figl6 shows that roughly befdre;,,(P;) = 30, the approximate solution in Sectlm-A and Sgctm-B,
among the four types of optimization variables, selectirl spectlve_ly. The results are plotted in Hi. 8 for differienel
Bi,; = Bu, causes the least increase in the distortion (comparg orrelation among the sources, where CES and CAS denote
to the APA case) whereas in the sarfe range selecting the e>_<act solution and the approxmgte solu_non,_respadgnv .
&; = &, causes the highest increase in the distortion. Howevgh_e figure shows that t_he CAS achieves dlstortlon_ which is
at P; values higher than the given value, the converse beha te close to that_ achieved by the CES for a wide range
can be observed. Effectively this means, for the given set ne_tyvork transmit power?; and the c_orrelatlon values.
if the network transmit power falls below the given valuerthe>Pecifically, when the sources are not highly correlated the

splitting power uniformly among the sensors in each clystdf€ difference in the distortion performance is essegtiall
to transmit observations to their respective CHs, does rtdligible over almost the entire rangef. This observation
cost much in terms of distortion performance while imp|eijlustrates the effectiveness of the APA scheme based on the

mentation of the power allocation protocol will significhnt distortion approximation vis-a-vis the scheme based @ th

be simplified. Similarly, when the network transmit power i€xact distortion function.

greater than the given value, then splitting power in a unifo  Finally, we compare the distortion performance of the APA
way among the CHSs, to transmit their equivalent observatioscheme for the cluster-based hierarchical WSN with that
to the FC, does not cause significant increase in distortiaf. the APA scheme for a centralized WSN in which all
One important conclusion from these simulation examples, wensors directly send their observations to the FC. Under th
could choose to optimize over a subset of the variables agentralized scheme, we can show that the estimation error
trade-off between the computational cost and implemertaticovarianceR. can be given by[d8) wittHR 'H” replaced
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VII. CONCLUDING REMARKS

10"

In this work we addressed the problem of power-constrained
estimation in cluster-based WSNs, where clusters observe
underlying correlated sources. The proposed power scimgdul
design minimizes the estimation distortion with constision
the transmit power of the clusters as well as the network

o c J ‘ ‘ ‘ ‘ as a whole. The estimation in the network is performed in
oo e o m e two stages. In the first stage, the CH of each cluster forms a
) o , _ preliminary estimate of the source based on the obsengtion
Fig. 8. Distortion comparison of the exact solution (CESY @he ap- . .
proximate solution (CAS) for correlated sources: Casé-E 50, Case-2) received from the sensors in the cluster. In the second phase
6 = 500, Case-3)0 = 5000, and Case-4) = 50000. the CHs transmit their estimates to the FC where the final
estimate is formed. In this work, we formulated the power
allocation problem as a convex optimization problem and
outlined its solution based on a block coordinate descent
method using partitioning principle by exploiting the inde
pendence property of the constraints. The proposed power
allocation design for fully correlated and fully uncorreld
cases can be implemented in a distributed fashion. However,
for partially correlated case the design requires a cenégl
scheduler to optimize the power allocations. Subsequently
we proposed an approximate solution based on an upper-
bound of the distortion function. Thus obtained solutioarse
favorable characteristics for distributed implementat{@ery
102 . - N R L much like the fully correlated and fully uncorrelated cgses
! ) ! Ne‘w;’,'kT,ansm:)Powe,mf;(,,,,] o and gives distortion performance that matches quite glosel
Fig. 9.  Cluster-based (Clust) and centralized (Centr) WS&iisortion to that of the, exact §0|u“9n' We Shqwed that the proposed
comparison for correlated sources: Casé-1) 50, Case-2)f) = 500, Case-3) Power allocation design gives distortion performance evett
6 = 5000, and Case-4p = 50000. than a uniform power allocation scheme. We also showed the
advantage of the cluster-based hierarchical WSN compared t
the centralized WSN in the perspective of realizing energy-
by a diagonal matrixC defined as efficient estimation.

Clj =Y

B a2 2 2
o7 Pt%ﬁwgwai,j +o5,; + 05,
J

Estimation Distortion {r {R.}/N.]

Network Transmit Powerl log(F)]

10" §

Ne]

107"

Estimation Distortion {r {R. }/

Py Bii9i. . _ In _this paper we have investigated poyver-constrained es-
viedJ. timation of spatially correlated sources in WSNs that are
organized in two tiers. It would be interesting to extend the
work to networks comprising more than two tiers, and ana-
In this particular case, the optimization probleflh (7) rezhiclyze other optimization criteria like minimization of nevk
to power consumption and outage probability, among others. We
assumed perfect knowledge of the instantaneous chanmsl, gai
minimize  tr (Re) it would be for instance intriguing to study more realistic
75>0, Bi,j>0,Vi,j ‘ scenarios where there are errors in the channel gains or to
subject to Z v <1, Z Bij <1, v <Al Vi, (43) adapt power allocations according to channel statistisgead
jeg i€Z; of the instantaneous channel gains. While in our analysis we
focused on the energy consumed in the transmitting opesatio
which can be solved on the same lines as the prollém (7).itrwould be interesting to take the analysis one step further
Fig.[ the estimation distortions achieved by the APA desigand also incorporate the energy consumed in the receiving
for the cluster-based and the centralized WSNs are plottegerations. We assumed fixed wireless medium access scheme
The figure shows that the cluster-based scheme outperfoffiorstransmission of the observations from the sensors to the
the centralized scheme in terms of achieved distortion. Tl#s and from the CHs to the FC. It would be for example
gap in distortion performance is significant when either thaf practical interest to study the estimation problem wiim{
network transmit power is reasonable large or the cormiatioptimization of the transmit powers and the medium access
among the sources is high, or both. In the realm of energseheduling assuming random channel access mechanism like
efficient estimation, this illustrates the potential adeae of slotted ALOHA or use schedule based mechanism like TDMA
the cluster-based hierarchical WSN topology. but with spatial reuse of the time slots.

K2



APPENDIXA
ProOOF oFPROR[I

By definingg; = gj/ch for j € J, itis straight forward to

obtainR. ando? from R, andaf,

l/)J = (1 _O‘)Ptfj/(a +67) and¢; ; = O‘Pt%ﬁm/(asj +

;) fori € I andj = j in @) and [B). Now to prove
Prop O, we need to show that the constraints of the problem
@ and the problenf]7) are equivalent. To this end, note t
according to the definition ofr we can split the constraint

Z]GJ (wJ(U + 05 ) + ZZGI (bz,J(O' +0' )) < P into
two as follows

> (o <(1-a)P, (44)
jeTJ

Z Z ¢ij(02 +07;) <aP,. (45)
JET i€Z;

Now substitutingy; = (1 —a)F¢;/ (o3, +57) in @) we get
Yies & < 1. Similarly substitutingp; ; = aPt'yjﬁi,j/(ogj +
of;) in @3) we gety";c ;v (Xicr, Bi;) < 1, where the
inequality holds forziezj Bi; <1and Z;V:CI v; < L.
Next, [3) in conjunction withy_, . 7 ¢; (oﬁi +47)
Ymax 1IMPly (I — )P, < tmax that gives «
max{0,1 — Ymax/Pi} = «p. Finally substituting@-d
@ t’YJﬁ’L,J/(U +O.1 g) In ZzeI (bZ](U +U ) ¢max

IV IA

and

noting thatzlez Bi; <landa <1 givey; < ¢max/Pt = g

()
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APPENDIXC
CONVEXITY OF tr (Re) OVER ;'S FORUNCORRELATED
SOURCES

The first-order derivative ofr (R.) w.r.t. £; is negative for

respectively, by substituting any valid¢; for all j, that is,

(“)tr(R6) B —Ugj
a9

(1—-a)Pyg;j
o2 + 07 (1 - a)P&gj + 1)

<0, Vy, (47)

RRhich shows thatr (R.) is a decreasing function @f. As the

constraints of the probleni{lL1) are linear, therefore, wver
the convexity of the problem it is sufficient to show that the
objective function is convex. For this purpose, we can show
that the second-order derivativestof(R.) w.r.t. {;’s are

92 tr (R 4 2(1 — «)2P2g?
r (2 ) _ 20 P . ( Of) t g] - 2 O’ v]7
afj o5, t0j (1=a)P&g; +1)
02 tr (Re)
——2 =0, VIl # 4, 48
6.9, #J (48)

which tell us that the Hessian of the objective function
is positive-semidefinite (PSD) that in turn proves that the
function is jointly convex ovet;’s.

APPENDIXD
EXISTENCE AND UNIQUENESS OFGLOBAL MINIMIZER «
FOR CORRELATED SOURCES

Let F and G be diagonal matrices with, for € 7,

(5.4] Uf— +ol +(1—a)((1—a)P&g; +1)0} ez, dig

Ymax -

i < 1; thus we haveymix = min{1, qudx/Pt}

APPENDIXB
CONVEXITY OF f(a) OVER7 FORUNCORRELATED
SOURCES

(‘7 +‘7¢ J)Pt’YJﬁl JCig and L
(O‘Pt’YJBT JCi,jO3 ]+U +‘72 )2 ql] T

(Ugj'l‘aiz,j)Pr,z’Y?ﬁ?C?,jUiz,j

(aPyy;Bijcijo; ;407 +02,)3"

f(a) w.r.t. « can be written as

Assumingg; ; =

0%f(e) _ > 2P:€j90%,
0a? eyt ((1 — Oé)Ptfjgj + 1) (Ugj -+ 0'32)
Pé&jg; 03 Yiez, G

((1 —a)P&g; + 1) (crgj + 0]2)

4 7o

g Ziezj Qi
2 2
T5; +0j

(1-a)Pi&g; +1)
a.gj 076 ( Zite qihj)z

(02, +03)°

(46)

Becausey; > 0 andz jes Vi < 1 which imply thatptg 95
Gy
2P&;9,

2
(1- ) Pi&jgj07 + 0 + ogj)

(1—a)B—20)A;07 > Gij+
iEZj
2 2 2 2 L .
(Usj +to;+ (QUSj +o07)(1 - a)Pt§J9.7) Z %ijt
=

(1—a)0 o; (1—l—(1—aPt§7g7 (qu) ,

i€

= (03 +07)P&jg; +

wherell; = (1 —a)P&;g,07 +07 +03,. Note that, for allj,

the second-order derivative ofF(;; >0 andGy; ;; > 0 foranya € 7.

The second-order derivative of (RE) can be written as

92 tr (RE)
Oa?

For any o € 7, note thattr (FRFRR.) > 0 be-
cause FR.F = (RO‘)F) R2°F and R.R. = RIR.
are PSH, and for any real PSD matrice\ and B
following holds tr (AA) > 0. Moreover note that
tr (ReGRe) = X c 7 Ypes GriRZ; > 0. Therefore,
d*tr (Re)/0a* > 0 for any o € 7 and thus shows that
tr (RE) is strictly convex ovef7 . This strict convexity proves
the existence and uniqueness of the minimizer¢iR.) over

=2tr (FR.FR.R,) + tr (R.GR,).  (49)

Clearly 8% f(a))/8a? > 0 for any a € 7, which establishes 7.

that f(«) is strictly convex overI. This proves the existence

and uniqueness of the global minimizer pf«) over 7 (cf.,
Prop. B.10 [28]).

INote thatR. is a covariance matrix and thus is PSD; for any PSD matrix
A its square root (i.e.A0-%) exists such thatA = (A%-5)TA0-5. Also,
AT A is PSD for any real matriA.
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APPENDIXE APPENDIXG

CONVEXITY OF tr (R¢) OVERE;'S FORCORRELATED CONVEXITY OF tr (Re¢) OVER 3; ;'S FORCORRELATED
SOURCES SOURCES
_The first-order derivative ofr (R.) w.r.t. &;, for all j, is For any non-zero vector € R¥i~1, we can show that
given by
2
Ot (Re) = (o= 1)Pt(0 + 0 )97 " (50) VTV%J' tr(Re)v = a; Z vl + C_Lj( Z vzng) . (54)
9Ej (1 = )Pi&jgjos + 03 +02)% i€T; i€Z;

wherer; = >, . R? <5 Note thatdtr (Re) /0§; < 0 whereV2 tr( <) is Hessian oftr (R.) w.r.t. §; ;'s for each
for any valid £;, which shows that the objective function |sj Gij = &2/, Gij = agij/Big, a; = 2Ap 7;/b;,
decreasing ovef;. To prove the convexity of the problem, itgng

is sufficient to show that the objective function is convear F

this purpose, we can write the HessiantefR.) w.r.t. {;'s _— crgjcrf-aj N A[M] 4Ry
as J (1 — a)PtgngchQ + 0'32- —+ 0'3]_ bg J+Velg,g
2
Ve tr(Re) = 2B + 2(ARcA) o (ReR.), (51) As each of aj, a;, and ¢ ; is positive, therefore
where A andB are diagonal matrices with vV tr(R)v > 0, which shows that the Hessian is
PSD and thus proves that, for eaghthe given optimiza-
A 032-—1-03]. tion problem is jointly convex w.rtg;;'s. We also have
(T a)P&igiof + 05 +03)% otr (Re) /0Bi; = —Gija;/2 < 0 for any valid 3; ;, which
meanstr (R.) is a decreasing function df; ..
By, (1—-a)*P? (0} + 02 )gjajrj (Re) 9 ofi.;
230

(1 _a)Pt§JQJ0 +U +02 )3’

for all 5. In (&1) AoB denotes the Hadamard productfufand
B. Note thatR.R. = RTR. andAR.A = (R’5A)TR!5A
are always PSD. BeS|d$ is PSD and the Hadamard product 1, prove Prop[13, we use the following lemma from [8].
of two PSD matrices is always a PSD matrix by tBehur
product theoremWe conclude that the Hessi

PSD, which in turn proves that the function is Jomtly conve>!1

APPENDIXH
ProOOF oFPrROR[3

Lemma 1:Let G andQ are two positive definite matrices,

over¢;’s. (GTQ 1G) (tr (GTG))2 55)
~ wr(GTQG)
APPENDIXF
CONVEXITY OF tr (R¢) OVER ;'S FORCORRELATED Proof: By defining A = GTQ %% B = G7Q5
SOURCES ' ’

3 B &3) follows from the following Cauchy—Swarz inequality
Letb; := >, c 7 aqi;/v; andb; := 37, 7 a?q; ;/7; with  tr (AAT) tr (BB”) > (tr (ABT))Q, which concludes the

Qi andq” defined in Append|EB For any valigl;, we can proof of the lemma. 0
show that Now, from [8) we can write
otr(Re)  (a—=1)P&gi((1—a)Pi&g5 + 1)0;%]’7”7'
— : ! (52 _ T T HRT
o (= REgs7 o7 oL (52)  tr(Re) = tr (Re) — tr (RSH (HR.H” +R) ' HR! ) ,
T T

is negative for allj, which tells us thatr (R.) is a decreasing < tr(Ry) — (tr (RHTHRY)) . (56)
function of 5;’s. Moreover, the Hessian af (R.) W.r.t. ~;'s B tr (RsH” (HRsH” + R) HR])

can be given b
g Y which follows from [B5) withG = HR! andQ = HR.H” +

V2 tr (Re) = 2B 4+ 2(ARA) o (RR.), (53) R. We can show that

which is PSD by the same arguments as employed in Appendix tr (RSHTHRT) —tr (HTHRTRS)
B. In 53) A andB are diagonal matrices with ® °
) =(l-a)P ) &g¥;,  (57)
(1 - )Pi&gi((1 — a)P&jgj + 1)0jb; jeT
(1 - Of)Ptﬁjngz +07+02)?

Ajj =

2
A 2 b2 where¥; = 37, /R S[m] = > req Cov{S;, Sk}". More-
B, = —2dl 7%, b over, we can show that
[5,4] T 2 2 N R
b; ( a)Pt@gJoj + 05 + 03,

RH” (HR;H” + R) HR!
for all j. The preceding discussion proves that the glven ( (T T’ N T) ) . T’
optimization problem is jointly convex over;’s (R H" HR; R:H H) +tr (H RHR, R, ) (58)
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Next, we can write J PrOOF OFPRORH
tr (H'RHRTR,) = (1 - a)*P? Y 3g20;0° For somed, let
ieJ §(0,) = argmax f(;0,)
+(1-a)P, ig; V(0% +02), €
(1ol 2 Gartler o) o(6.) = F(£(6.):0,). (69)
tr (ReH"HRIRH"H) = diag(H"H)" Qdiag(H"H) then forf, > 6, > 0 it is easy to show that
— (1 _ )2p2 . .. (a)
=U-aPBE ) D 6960 Qi (59 pl62) = F(E020:02)  F€0000). (70)
JET keT )
whereQ = (Rs) o (RTRy). By substituting [57) to[{39) in p(O1) = F(E(O1):01) = F(E(62); 60), (71)
(8) we get[[3D). where the inequality«) follows from the definition off (¢; 6)
and the inequalityt) results from the sub-optimality &f(¢-)
APPENDIX | for 6,. Combining [ZD) and[{11) we get
PROOF OFPROP.@ @(92) < (p(el)’ (72)

In order to prove Proji]l4, we need to show that the followi

ng, . . . . .
statements are equivalent, that [51(6Q51). \%hlch proves thatp(9) is a strictly decreasing function @t

As defined in Propl4, for som& such thatp(9*) = 0, the

0" — ma eTue (60) decreasing nature gf(d) means thatp(6) > 0 for 6 < 6*
TR Qe 1 oTE and(0) < 0 for 6 > ¢*.

IfneaggTUg — 0" (€7Q¢ + q"¢) =0. (61) Moreover, for somev € [0, 1] we can write

Let the solution of[[B0) b&*. We can write for any € }_wgo(@l) A= w)e(6r) = wf(E6n): 61) 1 ~W)F(E02):62)

Ty : 2 LF(€0):00) + (L— ) F(E(01):02)
"= oo e > TaErae 0 Do, [e0)"Ue@)) — 01 (0607 Qe(0n) +a"e(01) } +
which gives (1= w) {0 UE01) - 02 (£01)"Qe(01) +a"(01) ) }
e — 0" (¢7Qe" +aTE) =0, = €(00)UE0) — (01 + (1 - w)02) (£(0)7 Q&)
TUE-0"(€"Q+q"¢) <0,  VeeF.  (63) n ng(el))

From [G63), we have ()
TUE _ g+ (¢7 " 0 64 = f(&(6h);wh1 + (1 —w)ba) > p(wby + (1 —w)bs)), (73)
rglea}( {5 & (5 Qe +a 5)} B 64) where the inequalityd) is due to the sub-optimality of(6;)

and the corresponding maximizergs. This proves thaf{80) for ¢(f2) and the inequalityd) is_due to the decreasing_nature
leads to [[BL) that is[(86}@ET). Similarly we can also show Of ¥(0). Thus [Z2) together with[{¥3) prove that(6) is a
that [61)=(@0). For this purpose, assungé be the solution Strictly decreasing convex function.

of &1), which implies that for any € F
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