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Abstract—We study the problem of joint quantization and
power allocation in wireless sensor networks where spatially
distributed sensors observe a Gaussian random source, quantize
the resulting noisy observations, and transmit over orthogonal
fading channels to a remote fusion center (FC). The role of
the FC is to reconstruct the source with minimal distortion
using linear minimum mean square error estimation rule. In
this paper, we undertake the design of joint quantization and
power allocation based on the following optimization problem:
minimize the reconstruction distortion for a given total network
power consumption. To address this problem, at each sensor node
uniform scalar quantization is assumed. Moreover, assuming
pseudo-quantization noise model we show that the problem can
be solved using a block-coordinate descent type algorithm which
iteratively optimizes the quantization bits and the power alloca-
tions. The algorithm takes into account the spatial correlation,
the observation noise, and the channel quality of the sensors.
Numerical and simulation examples corroborate the analytical
results. The examples illustrate that the proposed design holds
a considerable performance gain compared to a quantization
scheme based on the uniform power allocation.

Index Terms—Digital modulation, orthogonal multiple access
channel, parameter estimation, quantization, resource manage-
ment, spatial correlation, wireless sensor networks.

I. I NTRODUCTION

W IRELESS sensor networks (WSNs) consist of spatially
distributed sensors that cooperatively monitor physical

or environmental conditions. The sensor networks are char-
acterized by the limited availability of energy, bandwidth,
and computational power. Our objective is to reconstruct the
underlying signal subject to resource constraints so that the
overall distortion for instance, mean square error (MSE) be
minimized. We consider a system in star topology where
sensors transmit quantized version of their noisy observations
via some orthogonal multiple access scheme (e.g., TDMA or
FDMA) to a central processing unit called fusion center (FC)
which produces a global picture of the physical phenomenon.
The sensors have partial and correlated observations of the
source. The correlation exists where sensors measure data
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in the same geographical location. In addition, observation
noise and communication channel may not have the same
conditions across all sensors. Thus independent quantization
and transmission of the observations is not an optimal strategy.

For estimation of a Gaussian source under mean-squared
distortion measure, in the information theoretic perspective, it
has been shown in [1] that the digital transmission is optimal
in a WSN observing the source where sensors have orthogonal
channels to the FC. This result combined with the advantages
of the digital communication scheme—such as modularity and
robustness, among others—motivate us to study the problem
of adaptive joint quantization and power allocation (AJQPA)
in WSNs.

In [2] a quantization and power allocation scheme is pro-
posed where a parameter is estimated based on the best linear
unbiased estimation (BLUE) rule which does not exploit the
spatial correlation. Krasnopeev and his colleagues in [3] con-
sider quantization of the observations where observation noise
is correlated across sensors. In [4], the authors propose a trade-
off between the number of active sensors and the quantization
bits of each sensor with the objective of minimizing the
estimation MSE subject to a network-wide rate constraint.
The work in [5] and [6] considers estimation of a source
by the BLUE rule with binary modulated transmission of
the quantized observations. Some other related works appear
in [7]–[10]. More recent work in [11] presents the idea
wherein sensors quantize their observation using identical one-
bit quantizers based on the minimization of Cramér–Rao lower
bound (CRLB) on the estimation error. Another related work
appears in [12], which deals with the one-bit quantizer design
for estimation in WSNs. For a vector parameter estimation
in WSNs, [13] presents a joint scheme to compress the
multidimensional observation at each sensor to a scalar value
and then design a one-bit quantizer to quantize the compressed
value with a target to minimize the CRLB distortion mea-
sure. These works do not consider the transmission of the
observations over non-ideal channels. The exposition in [14]
studies the problem of optimal network size in the frame work
of information theoretic source coding. In the aforementioned
works, an unknown deterministic parameter is estimated by a
set of distributed sensor nodes based on the quantized sensor
observations. However, therein they do not exploit the spatial
correlation, and in some cases assume ideal communication
channels or consider homogeneous sensor networks.

In [15]–[19] estimation schemes are proposed which exploit
the spatial correlation in WSNs, but do not consider the
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quantization of the sensor observations. In fact sensors simply
amplify and forward their noisy analog observations to the FC.
In this work, we present a joint design for quantization and
power allocation in WSNs which takes into account the spatial
correlation and cross-correlations of the observations, the qual-
ity of the observations, and the quality of the communication
channel from sensors to the FC. For solution to the underlying
optimization problem, we propose a block-coordinate descent
type algorithm which iteratively optimizes the quantization
bits and the transmit powers while minimizing the distortion
function.

At each sampling instant, the sensors quantize the obser-
vations employing the uniform scalar quantization scheme,
encode the quantization indices, and transmit the resulting
bits to the FC. The FC reconstructs the underlying source
based on a linear minimum mean square error (LMMSE)
estimation rule. The quantization and power allocation scheme
targets minimization of the reconstruction distortion subject to
a constraint on the total transmit power of the sensors. To this
end, an AJQPA scheme is presented in [20] where we do not
make any simplifying assumption be it on the quantization
noise or on the contribution of the channel errors to the total
reconstruction distortion. That scheme is computationally ex-
pensive and becomes intractable with the network size. Despite
the complexity issue, the AJQPA scheme discussed there under
reasonably simple scenarios (e.g., small network size) can
serve as a baseline approach for performance comparison and
can be used as a tool to check the validity of the simplifying
assumptions of other schemes. In our pursuit to simplify the
AJQPA problem, we use in the current work the pseudo-
quantization noise model [21], [22]. Based on that, the recon-
struction distortion is formed in two steps: Firstly, assuming
error-free transmission of the quantized sensor observations
to the FC we characterize the distortion; subsequently the
contribution of the channel errors to the distortion is quantified
and added to form the total distortion. Based on this distortion
function, to solve the AJQPA problem we propose a block-
coordinate descent type algorithm which scales well with the
network size. The proposed design leads to better performance
compared to a quantization scheme based on uniform power
allocation to the sensors.

Compared to the existing literature, the contributions of this
work lie in the following aspects:

• The proposed design for AJQPA in the sensor networks
jointly exploits the spatial correlation, the observation
noise, and the channel quality of the sensors. In WSN
applications where for example, the underlying source
is acoustic pressure, heat, or chemical concentration, the
sensor observations are better characterized by spatial
correlation based observation models as in [15], [17]–
[19]. However, the existing works on quantization for es-
timation in the sensor networks, like [2], assume that the
underlying source is spatially invariant and deterministic,
but otherwise unknown. Thus they do not consider the
spatial variations of the source and do not incorporate
any a priori knowledge about the source.

• The proposed AJQPA scheme gives solution which is
markedly simpler than the scheme in [20] and gives

S
ou

rc
e

(s)

s1

sN

n1

nN

x1

xN

m1

mN

h1

hN

w1

wN

m′
1

m′
N

F
us

io
n

C
en

te
r

(F
C

)

ŝ
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Fig. 1: Block diagram of the system.

distortion performance which compares favorably with
that of [20]. Compared to the work by Xiao and his
colleagues [2], where a joint quantization and power
allocation scheme is proposed, the underlying system
model (as mentioned before), the optimization problem,
and the resulting solution are notably different for the
AJQPA scheme presented in this paper. The joint quanti-
zation and power allocation problem in [2] under certain
assumptions—the given target bit-error probability for the
sensors, the choice of the sum of the squares of the
sensor transmit powers as the objective function, and so
on—is transformed into an optimization problem over
the quantization bits only. The sensor transmit powers
are obtained as a function of the quantization bits for a
fixed bit-error probability. However, in the current work
we jointly optimize the quantization bits and the transmit
powers (and thus also optimize the bit-error probability).

The rest of the paper is organized as follows. Section II
describes the network setup under consideration. In Sections
III, we formulate the AJQPA problem and outline its solution.
To substantiate the analytical findings, Section IV presents
some numerical and simulation examples. Finally, Section V
provides some concluding remarks.

II. SYSTEM MODEL

Consider the system model shown in Fig. 1, whereN
spatially distributed sensors observe an unknown Gaussian
random sources ∼ N

(
0, σ2

s

)
. Each sensor, say sensori, has

a partial observationsi ∼ N
(
0, σ2

si

)
of the sources. The

observation is corrupted by additive noiseni ∼ N
(
0, σ2

ni

)

such that the noisy observation at the sensor is given by

xi = si + ni, i = 1, . . . , N, (1)

where ni is independent across sensors, and is also inde-
pendent ofs and si’s. We assume that the sensors employ
the uniform scalar quantization scheme to quantize their
observations. We also assume that the sensors transmit the
quantization indices to the FC via orthogonal channels; where
the channels experience flat fading independent over time and
across sensors. The fading channels, with gain factorsgi = |hi|
for all i, are assumed to be perfectly known at the FC and do
not change during the estimation of each observation sample.
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The wi ∼ CN
(
0, 2σ2

wi

)
denotes the receiver noise, which is

independent across the sensors, and is also independent of
s, si’s, andni’s. In Fig. 1, theEncod block at each sensor
node performs two functions: It encodes the indices of the
quantized values according to some labeling rule for example,
natural binary code, and then modulates the resulting bits (also
called here quantization bits) using some digital modulation
scheme for example, BPSK modulation. On the other hand,
eachDecod block at the FC performs the converse functions
of the correspondingEncod block—that is, demodulation and
mapping of the received bits to the reconstruction values.

We assume that the sources, the observationsi at sensor
i, and the observationsj at sensorj are jointly Gaussian
distributed having zero mean and covariancesCov{s, si} =
σsσsiρs,i, Cov{s, sj} = σsσsjρs,j , and Cov{si, sj} =
σsiσsjρi,j for all i and j. Note thatρs,i specifies the cor-
relation betweens and si, and ρi,j specifies the correlation
betweensi andsj . Moreover, we assume that the samples of
each ofs, si, ni, andwi are independent in time. The spatial
correlationρs,i and cross-correlationρi,j coefficients can be
modeled as follows:

ρs,i = e−(ds,i/θ1)
θ2
, ρi,j = e−(di,j/θ1)

θ2
, (2)

respectively. Whereds,i is distance between the sources and
the sensori, di,j is distance between the sensorsi and j,
θ1 > 0 is a range parameter which controls how fast the
correlation decays with the distance, and0 < θ2 ≤ 2 is called
a smoothness parameter [15].

When the sensor observationsxi’s are available at the FC
then the optimal estimator in the minimum MSE sense is the
conditional mean ofs given xi’s that is, ŝ0 = E[s|xi, ∀i],
where E denotes the mathematical expectation. Under the
jointly Gaussian assumption ofs and xi’s, the conditional
mean estimator turns out to be linear and is called the LMMSE
estimator which can be written aŝs0 = c

T (Cs+Cn)
−1

x with
the associated MSE distortion given by

D0 = σ2
s − c

T (Cs +Cn)
−1

c, (3)

wherec = E[xs], Cs = E[ssT ], andCn = E[nnT ] with x =
[x1, . . . , xN ]T , s = [s1, . . . , sN ]T , and n = [n1, . . . , nN ]T

[23]. Note that[.]T denotes the matrix–vector transpose oper-
ation.

Remark 1: The estimator which achieves the distortionD0

is called a clairvoyant estimator and it can be used as a
performance benchmark, as the distortion achieved by any
estimator designed to minimize the MSE distortion measure
is lower bounded byD0.

We can view the quantization functionQi at sensori as a
mapping, which maps the observationxi to one of the finite
rational numbers{mi,1, . . . ,mi,Mi

} as follows:

Qi : xi 7→ mi

mi = mi,k, for ui,k < xi ≤ ui,k+1, k = 1, . . . ,Mi, (4)

where ui,k ’s are quantization interval∆i boundaries and
mi,k ’s are quantization values (also called representation or
reconstruction values). The sensori encodes the indexk
corresponding to the valuemi,k and transmits the resulting bits

to the FC. The encoding of the quantization indices does not
consider entropy coding that is, a fixed length coding scheme
is used. Thus, we requireLi = log2(Mi) bits to encode the
Mi indices, which we call as the quantization bits. Moreover,
in this work, we do not consider channel coding.

For the uniform scalar quantization, the quantization bound-
aries can be written in terms of the quantization interval∆i

as ui,k = (2k − 2 − Mi)∆i/2 for k = 2, . . . ,Mi with
ui,1 and ui,Mi+1 denoting the greatest lower bound and the
lowest upper bound onxi, respectively. The corresponding
quantization values are given bymi,k = (2k − 1−Mi)∆i/2
for k = 1, . . . ,Mi. As xi is a zero-mean Gaussian distributed
random variable, therefore for some reasonably large value
of W we havep(|xi| ≥ W ) ≈ 0. As a consequence we
can assume thatui,1 = −W and ui,Mi+1 = W . In this
particular case, the quantization interval size∆i can be given
by ∆i = 2W/(2Li − 1) ≈ 2W/2Li .

III. QUANTIZATION AND POWER ALLOCATION : PROPOSED

APPROACH

Let Dt be the estimation distortion of the underlying source
at the FC. The quantization and power allocation scheme is
based on minimization of the distortion subject to a constraint
on the total network power consumption as follows:

minimize
Li,Pi, ∀i

Dt(Li, Pi; i = 1, . . . , N)

subject to

N∑

i=1

Pi ≤ Pt, Li ∈ Z+, Pi ∈ R+, ∀i. (5)

WhereDt(Li, Pi; i = 1, . . . , N) is the distortion function;Li

and Pi are the quantization bits and the transmit power of
sensori, respectively;Z+ andR+ denote the set of positive
integers and the set of positive real numbers, respectively. In
(5), the constraint on the total power consumption enables
a fair comparison between the networks of different sizes.
Moreover, putting a cap on the total power consumption limits
interference with the neighboring networks, conserves energy,
and also makes sense from the view point of global energy
efficiency [24].

In the sequel, we solve the optimization problem (5) based
on an approximation of the distortion function. This approxi-
mation is obtained by assuming the pseudo-quantization noise
model, which is a simplified model of the quantization process
[21], [22]. We use thus obtained distortion function as a
surrogate forDt and solve the problem (5).

A. Preliminaries and the Problem Solution

The quantization noise is an error or a distortion introduced
by the quantizer and is defined as a difference between the
quantizer output and the input that is,qi := mi − xi for all
i, which is bounded as−∆i/2 ≤ qi ≤ ∆i/2. In general,
the quantization noiseqi is a non-zero mean random variable
which is not uniformly distributed, and is correlated with
the {qj}∀j 6=i and the inputs{xi}Ni=1. However, it has been
shown in [21] that when quantizing the correlated Gaussian
distributed variables{xi}Ni=1 with uniform quantizers, surpris-
ingly the quantization noises{qi}Ni=1 are almost uncorrelated
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and independent from each other as well as from the inputs
{xi}Ni=1 for extremely rough quantization (values of the quan-
tization step size∆i up to σxi

or more) and for very high
correlation coefficients (but strictly less than 1) betweenany
xi andxj . Moreover, all of the quantization noisesq1, . . . , qN
can be approximated as zero-mean and uniformly distributed
random variables between±∆1/2, . . . ,±∆N/2 with corre-
sponding variances∆2

1/12, . . . , ∆
2
N/12, respectively; that is,

the quantization noise variance for sensori is

σ2
qi =

W 2

3(2Li − 1)2
, ∀i. (6)

Consequently, the quantization noises{qi}Ni=1 can be modeled
as uniformly distributed and statistically independent ofeach
other and of the inputs{xi}Ni=1. In what follows, we use
this quantization noise model to design the AJQPA scheme.
Therein, to form the estimate of the sources and to char-
acterize the reconstruction distortion, we adopt a two-step
procedure: In the first step, we assume that the quantized
signals from sensors arrive error free at the FC; then in the
second step, we incorporate the contribution of the bit errors
caused by the channel. This kind of approach to estimation
over noisy channels is used in the literature for instance, see
[2], [6].

The FC employs an LMMSE estimator to reconstruct the
source from the quantized signals of the sensors. Letm′

i be
the quantized message received through the actual channel and
mi be the quantized message received error free at the FC. We
can write estimateŝs and ŝ′ as follows:

ŝ =

N∑

i=1

αimi, ŝ′ =

N∑

i=1

αim
′
i, (7)

whereαi’s are the LMMSE weighting coefficients. The total
mean-squared reconstruction distortion at the FC that is, MSE
of ŝ′ with respect to the actual parameters can be defined as

Dt = E{s,si,ni,wi|hi,∀i}

[
(ŝ′ − s)2

]

= E[(ŝ− s)2]
︸ ︷︷ ︸

:=D

+E[(ŝ′ − ŝ)2]
︸ ︷︷ ︸

:=Dc

+2E[(ŝ′ − ŝ)(ŝ− s)]
︸ ︷︷ ︸

:=Dm

, (8)

whereD accounts for the distortion arising from the spatial
correlation, and the quantization and observation noises;Dc

accounts for the distortion from the channel errors; andDm

characterizes the mutual term. Based on the Cauchy–Schwarz
inequality we can upper bound the distortionDt as follows:

Dt ≤ E[(ŝ− s)2] + E[(ŝ′ − ŝ)2] + 2
√

E[(ŝ′ − ŝ)2]E[(ŝ− s)2]

=
(√

D +
√

Dc

)2 ≤ 2 (D +Dc) = 2D̃t (9)

whereD̃t = D+Dc. To obtain (9) we have used(E[xy])2 ≤
E
[
x2
]
E
[
y2
]

in the first inequality and
(∑K

k=1 Dk

)2 ≤
K
∑K

k=1 D
2
k in the second inequality. In the subsequent de-

velopment for the AJQPA design, we target minimization of
D̃t. To this purpose, first we characterize the distortionD and
subsequently the distortionDc.

The distortionD can be viewed as the MSE of the estimate
ŝ in comparison to the original signals assuming that the
quantized signalsmi’s are perfectly received at the FC. In the

following we determine the weighting factorsαi’s such that
the distortionD be minimize. The distortionD = E

[
(ŝ−s)2

]

can be characterized as follows:

D = σ2
s +

N∑

i=1

α2
i

(
σ2
i + σ2

qi

)
+

N∑

i=1

N∑

j 6=i

αiαjσsiσsjρi,j − 2

N∑

i=1

αiσsσsiρs,i, (10)

whereσ2
i = σ2

si +σ2
ni

. For i = 1, . . . , N , by taking derivative
of (10) with respect toαi and setting it equal to zero, we get
the following expression for the weighting coefficients that
minimizes the distortionD:

αi =
ρs,iσsσsi −

∑N
j 6=i βjγjσsiσsjρi,j

σ2
i + σ2

qi

= βiγi. (11)

Whereβi andγi are, respectively, defined as

γi =
1

σ2
i + σ2

qi

, ∀i, (12)

βi = ρs,iσsσsi −
N∑

j 6=i

βjγjσsiσsjρi,j , ∀i. (13)

From (6) and (12), we can expressLi as a function ofγi as
follows:

Li = log2

(

1 +

√

W 2γi
3 (1− γiσ2

i )

)

. (14)

Eq. (13) forms a set ofN simultaneous linear equa-
tions which in the matrix–vector notation can be written as
β =

(
CγC̃s + I

)−1
c; where β = [β1, . . . , βN ]T , Cγ =

diag (γ1, . . . , γN ), andC̃s = Cs −diag
(
σ2
s1 , . . . , σ

2
sN

)
. Note

that c = E[xs] and Cs = E
[
ss

T
]

with x = [x1, . . . , xN ]T

and s = [s1, . . . , sN ]T . It can be shown that the vector
α = [α1, . . . , αN ]T can be written as

α = Cγβ =
(
C̃s +C

−1
γ

)−1
c. (15)

With (11) the distortion in (10) simplifies to

D = σ2
s −

N∑

i=1

αiσsσsiρs,i

= σ2
s − αT

c = σ2
s − c

T
(

C̃s +C
−1
γ

)−1

c, (16)

where note that the components ofCγ that is,γi is function
of Li for all i (c.f., (6) and (12)).

Note that the coefficientsαi’s are optimal for the estimate
ŝ in the MMSE sense. We use the same weighting coefficients
to form the estimatês′ from the quantized sensor observations
received through the non-ideal channels (c.f., (7)). That is why
we can viewŝ and ŝ′ in (7) as optimal and pseudo-optimal
LMMSE estimates, respectively. We can see from (11) that
the variableγi naturally factors out fromαi for all i. The
advantage of defining the auxiliary variablesγi’s andβi’s in
the context of the joint quantization and power allocation will
become clear in the subsequent development. There, we shall
see that these variables enable us to formulate the problem
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as a convex optimization problem and based on the resulting
solution we propose a block-coordinate descent type algorithm
which can achieve monotonic decrease in the distortion.

In the characterization ofD, we have assumed error free
transmission of the quantized sensor observations to the
FC—that is, we assumed ideal communication channels. How-
ever, in practice, the channels from the sensors to the FC
may subject to fading and additive noise causing bit errors
which further increase the distortion. The effect of channel
errors on the distortionDt is accounted for by the termDc.
We assume that the receiver noise is Gaussian distributed.
Herein we also assume that the channel does not change
during the transmission of the quantization bits corresponding
to each observation cycle—that is, during the transmission
of Li bits—and the channel gain is perfectly known at the
FC. Moreover, we assume that the sensori quantizes the
observations to one of the2Li quantization levels, encodes
the corresponding quantization index usingLi-bit natural
binary code, and subsequently transmits these bits to the FC
using BPSK modulation scheme. Suppose sensori expends
ωi,κ ≥ 0 fraction of its transmit powerPi to transmit the
κth quantization bit,κ = 1, . . . , Li, then the corresponding
bit-error probability is given byεi,κ = Q

(√
ζiωi,κPi

)
,

where ζi = g2i /σ
2
wi

defines the so-called channel SNR and
∑Li

κ=1 ωi,κ = 1. For the contribution of channel bit errors to
the distortion, we have the following proposition.

Proposition 1: Under the preceding assumptions, the con-
tribution of channel bit errors to the distortion, characterized
by Dc = E

[
(ŝ′ − ŝ)2

]
, can be upper bounded as follows:

Dc ≤ 3F

N∑

i=1

Li∑

κ=1

α2
iLi4

−κe−ζiωi,κPi/2 := D(opb)
c , (17)

whereF = 4NW 2/3.

Proof: See Appendix A.

Remark 2: From (17) we can see that the contribution of
the errors in quantization bitsκ = 1, . . . , Li, for all i, to
the distortionDc is according to the importance of the bits:
The distortion decreases exponentially with the bit-indexκ
such that the most significant bit (MSB) that is,κ = 1 when
received incorrectly incurs the highest penalty whereas the
least significant bit (LSB) that is,κ = Li the smallest penalty
in terms of MSE. Therefore, to minimize the distortion, there
is a room to optimize transmit power across the sensors as
well as along the quantization bits of each sensor.

With (16) and (17) the distortioñDt becomes

D̃t = D +Dc ≤ σ2
s −

N∑

i=1

αiσsσsiρs,i + 3F

N∑

i=1

Li∑

κ=1

α2
iLi4

−κe−ζiωi,κPi/2

= σ2
s − c

T
(

C̃s +C
−1
γ

)−1

c+ Fc
T
(

C̃s +C
−1
γ

)−1

Ũ

(

C̃s +C
−1
γ

)−1

c := D̃
(opb)
t , (18)

whereŨ = diag
(∑L1

κ=1 L14
−κe−ζ1ω1,κP1/2, . . . ,

∑LN

κ=1 LN

4−κe−ζNωN,κPN/2
)

and D̃
(opb)
t , similarly D

(opb)
c given in

(17), signifies that the powerPi of the sensori is assigned to
the quantization bitsLi according to their significance—where
opb in the superscript signifies the optimal power allocation
to the bits.

In order to simplify the optimization process and for the
sake of mathematical tractability, first we assume that the
total transmit powerPi of sensor i, for all i, is divided
equally among the quantization bits of the sensor that is,
ωi,κ = 1/Li for all κ and use the resulting distortion function
to derive an algorithm for the AJQPA by solving a relaxed
problem. Afterwards, we allocate power of each sensor to its
quantization bits according to their importance.

Proposition 2: Under the assumption of uniform power
allocation to the bits, the channel distortion termDc can be
upper bounded as follows:

Dc ≤ F

N∑

i=1

α2
iLie

−ζiPi/2Li := D(upb)
c . (19)

Proof: See Appendix A

Now with (19) the distortionD̃t can be written as follows:

D̃t ≤ σ2
s −

N∑

i=1

αiσsσsiρs,i + F

N∑

i=1

α2
iLie

−ζiPi/2Li

= σ2
s − c

T
(

C̃s +C
−1
γ

)−1

c+ Fc
T
(

C̃s +C
−1
γ

)−1

U

(

C̃s +C
−1
γ

)−1

c := D̃
(upb)
t , (20)

whereU = diag
(
L1e

−ζ1P1/2L1 , . . . , LNe−ζNPN/2LN
)
. Note

that the distortionsD(upb)
c and D̃

(upb)
t signify that the total

powerPi of each sensori is distributed uniformly among its
quantization bitsLi—where upb in the superscript signifies
the uniform power allocation to the bits.

Now we base the design of the quantization and power
allocation scheme on an optimization problem where we
minimize the distortionD̃(upb)

t subject to a constraint on the
sum power over all sensors as follows:

minimize
Li,Pi, ∀i

D̃
(upb)
t

subject to

N∑

i=1

Pi ≤ Pt, Li ∈ Z+, Pi ∈ R+, ∀i. (21)

SinceLi is a positive integer variable (i.e.,Li ∈ Z+), the
optimization over the quantization variableLi ∈ Z+ and the
transmit powerPi ∈ R+ constitutes a mixed integer nonlinear
programming (MINLP) problem whose computational com-
plexity increases exponentially with the problem size [27]. In
order to simplify the problem, we relax the integrality ofLi

and allow it to take positive real values (i.e.,Li ∈ R+ ).
With this relaxation assumption we can consider the following
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problem.

minimize
γi,Pi, ∀i

D̃
(upb)
t

subject to
N∑

i=1

Pi ≤ Pt, 0 ≤ γi ≤
1

σ2
i

, Pi ≥ 0, ∀i, (22)

where the lower bound and the upper bound onγi come from
(12) forLi = 0 andLi = ∞, respectively. Note that we choose
optimization overγi’s because it is simpler to do than over
Li’s. As theγi andLi have one-to-one relationship via (14),
so once we knowγi we can findLi. Having foundLi ∈ R+,
we can convert it to its original domain that is,Z+. In Section
III-B, we shall say more about the method to migrate from
the relaxed solution to the integer solution.

In order to solve the problem (22) and to derive an algorithm
for the joint quantization and power allocation, we adopt the
approach where we first optimize the bits for fixed power al-
location to the sensors; then we optimize power for given bits.
In this way, the problem is decoupled into two subproblems
and the solution of these is outlined in Section III-A1 and
Section III-A2, which are coming next.

1) Optimizing the quantization bits: For given Pi’s, the
optimization problem (22) becomes

minimize
γi,∀i

D̃
(upb)
t

subject to 0 ≤ γi ≤
1

σ2
i

, ∀i. (23)

Due to the spatial correlations, the objective function is a
nonlinear function of the optimization variables and a closed-
form solution to the problem is hard to find. To this end, in
what follows, we outline an iterative descent-type algorithm
which is guaranteed to converge to the Karush-Kuhn-Tucker
(KKT) point of the underlying optimization problem.

Let γ = [γ1, . . . , γN ]T be the vector ofγi’s andd
(
γ(κ)

)
=

∇γD̃
(upb)
t

∣
∣
γ=γ(κ) be the gradient of̃D(upb)

t with respect toγ

evaluated atγ(κ), whereκ is an iteration index. For simplicity,
we denoted

(
γ(κ)

)
by d

(κ). The ith component of the vector
d is given by

di =
∂D̃

(upb)
t

∂γi

= c
T
(

C̃s +C
−1
γ

)−1
[−1

γ2
i

Ji +
F

γ2
i

Ji

(

C̃s +C
−1
γ

)−1

U

+F
∂U[i,i]

∂γi
Ji +

F

γ2
i

U

(

C̃s +C
−1
γ

)−1

Ji

]

(

C̃s +C
−1
γ

)−1

c, (24)

where Ji is a diagonal matrix with unity at(i, i)th place
and all other elements equal to zero, and

∂U[i,i]

∂γi
=

1+ζiPi/2Li

2 log(2)γi(1−γiσ2
i )
e−ζiPi/2Li with Li given in (14) as a function

of γi. Note thatU[i,i] denotes(i, i)th element of the matrix
U.

Let P = {γi|0 ≤ γi ≤ 1/σ2
i , i = 1, . . . , N} define the

feasible region of the problem (23). The basic idea of the

descent-type algorithm is the following: Givenγ(κ) ∈ P in
iterationκ, find γ(κ+1) ∈ P such that

D̃
(upb)
t

(

γ(κ+1)
)

< D̃
(upb)
t

(

γ(κ)
)

(25)

by taking a step in the descent directionΘ
(κ); that is,γ(κ+1) =

γ(κ)+τ (κ)Θ(κ), whereτ is a positive step-length parameter. At
γ(κ), theΘ(κ) is a descent direction provided

(
d
(κ)
)T

Θ
(κ) <

0 holds. To find the descent direction atγ(κ), assumeΘ(κ) =
γ̄(κ) − γ(κ) and solve for̄γ(κ) as follows:

γ̄(κ) = argmin
γ∈P

(

d
(κ)
)T (

γ − γ(κ)
)

, (26)

where the optimization problem is a linear programming (LP)
problem with polyhedron (defined byP) as a feasible region,
which is defined by simple bound constraints. The LP problem
can be efficiently solved by numerical methods for example,
the interior-point method [26]. Forτ (κ) ∈ [0, 1] and forγ(κ) ∈
P, the γ(κ+1) = γ(κ) + τ (κ)

(
γ̄(κ) − γ(κ)

)
being a convex

combination of two points,̄γ(κ) andγ(κ), in P (a convex set),
we haveγ(κ+1) ∈ P.

Now optimizeγi’s as follows:

a) Initialize γ(0) ∈ P and setκ = 0

b) Find Θ
(κ) such that

(
d
(κ)
)T

Θ
(κ) < 0 holds by solving

(26), otherwise stop.
c) Find step lengthτ (κ) such that (25) holds.

The iterative procedure generates pointsγ(κ)’s which are
feasible (i.e.,γ(κ) ∈ P) and decreasẽD(upb)

t . It is fairly simple
to show that the sequence

{
γ(κ)

}
converges to a stationary

point that is, to the first-order KKT point of the underlying
optimization problem (see Prop. 2.2.1 in [25]).

Note that the numerically search forγi’s as outlined requires
a number of matrix inversions and for a sensor network with
large N it may become computationally expensive. In that
case, to reduce the complexity, we adopt the following suc-
cessive approximation approach to optimize theγi’s. Noting
thatαi = βiγi, we can write

D̃
(upb)
t = σ2

s −
N∑

i=1

γiβiσsσsiρs,i + F

N∑

i=1

γ2
i β

2
i U[i,i]. (27)

To optimize γi’s, we assume thatβi’s are given. Then we
update the values ofβi’s using the values ofγi’s from the pre-
vious iteration. Using this idea of successive approximation,
the D̃

(upb)
t decouples along the sensors and we can solve for

γi as

γi = arg min
0≤γi≤

1

σ2
i

f(γi) = −γiβiσsσsiρs,i + Fγ2
i β

2
i U[i,i]

for which the optimality conditions are:

∂f(γi)

γi
≥ 0, if γi = 0, (28)

∂f(γi)

γi
= 0, if 0 < γi <

1

σ2
i

, (29)

∂f(γi)

γi
≤ 0, if γi =

1

σ2
i

. (30)
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As γi = 1/σ2
i meansLi = ∞ from (14), which is not possible.

Therefore, from (28) and (29) find0 ≤ γi < 1/σ2
i by solving

2γiU[i,i] + γ2
i

∂U[i,i]

∂γi
≥ σsσsiρs,i

Fβi
, ∀i. (31)

For givenPi’s andβi’s, as shown in Appendix B, the function
D̃

(upb)
t is convex with respect toγi’s. Therefore the optimiza-

tion of γi’s as given in (31) decreases the distortion.
2) Optimizing the transmit powers: For given Li’s, the

optimization problem (22) becomes

minimize
Pi,∀i

D̃
(upb)
t

subject to

N∑

i=1

Pi ≤ Pt, Pi ≥ 0, ∀i, (32)

which we solve using the method of Lagrange multipliers. We
define the LagrangianΛ associated with the problem (32) as

Λ (λ, ηi, Pi; ∀i) =D̃
(upb)
t +

N∑

i=1

Pi(λ− ηi)− λPt, (33)

whereλ andηi are Lagrange multipliers. The KKT optimality
conditions are given as follows:

∂Λ

∂Pi
=

∂D̃
(upb)
t

∂Pi
+ λ− ηi = 0, ∀i; (34)

λ

( N∑

i=1

Pi − Pt

)

= 0, λ ≥ 0,

N∑

i=1

Pi ≤ Pt; (35)

ηiPi = 0, ηi ≥ 0, Pi ≥ 0, ∀i. (36)

In order to assign power to the sensors, solving the KKT
conditions in (34) and (36) gives

Pi =
2Li

ζi
log+

(
Fα2

i ζi
2λLi

)

, for i = 1, . . . , N, (37)

where log+(x) = max{log(x), 0} and log denotes the loga-
rithm to the basee. Eq. (37) shows that the powers allotted
to the sensors depend on the correlation values and the
observations quality (viaαi’s), the quantization bits, and the
channel SNRs. Moreover, depending on the values of these
parameters some of the sensors withLi > 0 (sensors with
Li = 0 always havePi = 0) may get zero power that is,
would be switched off altogether. In fact, for a sensori to get
Pi > 0 that is, to be active, following conditions must hold:
Li > 0 andFα2

i ζi/2λLi > 1.
Proposition 3: The objective functionD̃(upb)

t is a decreas-
ing and jointly convex function ofPi’s for given quantization
bits.

Proof: See Appendix C.
The preceding proposition tells us that the objective function

is decreasing with increasing power budget. As we are mini-
mizing a decreasing function, the optimal solution forPi’s is
always at the sum-power constraint boundary. Consequently
the multiplier λ should be determined so that it satisfies the

sum-power constraint with equality that is,
∑

j∈A Pj = Pt

which gives

λ = exp





Pt +
∑

j∈A
2Lj

ζj
log

2Lj

Fα2
j
ζj

−∑j∈A
2Lj

ζj



 , (38)

whereA :=
{
i|Li > 0 ∧ Fα2

i ζi/2λLi > 1, i = 1, . . . , N
}

defines the set of active sensors.
The Prop. 3 tell us that the objective function is jointly

convex over allPi’s for given quantization bits. Moreover, the
power constraint is linear. Thus the power allocation problem
for given quantization bits is convex. Therefore, the power
allocation solution given in (37)–(38) is optimal.

Substituting (38) in (37) and using the log–sum inequality
[28] we can write

Pi ≥
2Li

ζi




Pt

∑

j∈A
2Lj

ζj

+ log
α2
i ζi
Li

∑

j∈A
Lj

ζj
∑

j∈A α2
j



 . (39)

For Pt → ∞, the logarithmic term in (39) is potentially
negligible compared to the other term and thus we can
approximatePi as

lim
Pt→∞

Pi ≈
Li

ζi

Pt
∑

j∈A Lj/ζj
, (40)

which shows that at relatively highPt, the Pi’s can be
determined by the values ofLi/ζi for all i.

3) Summary: Now based on the development in Section
III-A1 and Section III-A2, a block-coordinate descent algo-
rithm can be proposed to iteratively optimize the quantization
bits and the transmit powers as follows.

I) Initialize the parametersLi andPi, and calculateγi and
αi for i = 1, . . . , N .

II) Determine power allocationPi for i = 1, . . . , N as
outlined in Section III-A2.

III) Determine quantization bitsLi for i = 1, . . . , N : find
γi’s as outlined in Section III-A1 and calculateLi’s from
(14). Updateαi’s from (15).

IV) Repeat steps (II) and (III) until there is no appreciable
decrease in the objective function.

We call this as Algorithm1. The algorithm iteratively opti-
mizesLi’s and Pi’s. The algorithm decreases the objective
function D̃

(upb)
t in each step—in step (II) for givenγi’s and

in step (III) for givenPi’s. Therefore the given algorithm can
achieve a monotonic decrease in the objective function from
one iteration to the other.

B. Migration from Continuous Solution to Integer Solution

In the preceding section, we outlined solution for the
continuous relaxation of the MINLP problem. One way to
obtain the integer solution is by roundingLi, for all i, to the
nearest integer. However, this constitutes a naive approach.
Herein, to obtain the integer solution from the continuous
relaxation, we propose a greedy-heuristic procedure outlined
in the following, which gives distortion performance better
than the simple rounding scheme as we shall see in Section
IV.
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I) Sort Li’s in an ascending order and construct the corre-
sponding index-set denoted byL.

II) For i = 1, . . . , N , do
III) Set eitherLL(i) = ceil

(
LL(i)

)
or LL(i) = floor

(
LL(i)

)

depending on which gives the minimum distortion, and
construct the index-setI asI(i) = L(i).

IV) Use Algorithm 1 to reallocate powerPk to the sensors
k = 1, . . . , N and bitsLj to the sensorsj ∈ L\I, where
L \ I means all elements ofL which are not inI.

V) Sort Lj for j ∈ L \ I in an ascending order and
accordingly update the index-setL.

We call this procedure as Algorithm2. The given algorithm
successively converts the real-valued quantization bitsLi’s
(from the solution of the relaxed problem) to the integer values
starting from the sensor with the smallest number of bits.
After converting the relaxed number of bits of the sensor to
the integer domain, the algorithm recalculates the bits of the
remaining sensors and reallocates power to all sensors using
Algorithm 1. In each step of the algorithm, the underlying
hypothesis, in converting the bits from the real domain to
the integer domain, is that the sensor which gets the smallest
number of quantization bits by the Algorithm1 will be the
sensor that is least effective in the network (among the sensors
with non-integer bits) and rounding the bits of this sensor is
least likely to affect the distortion.

C. Power Allocation Along the Quantization Bits

The objective functionD̃(upb)
t of the optimization problem

(21) assumes that the total transmit powerPi of sensori
is uniformly distributed among its quantization bitsLi; that
is, Pi/Li is expended to transmit each of theLi bits. This
approach is not optimal as the contribution of the bits to
the reconstruction distortion is proportional to the importance
of the bits—an error in the MSB gives the highest increase
whereas an error in the LSB the smallest increase to the
distortion. Nevertheless, the uniform power allocation among
the bits has greatly simplified the optimization problem by
enabling us to formulate and solve the continuous relaxation
counterpart. Once the proposed algorithm for the relaxed
problem has converged and we have converted the real-valued
Li’s to the integer domain, then we can allocate the resultant
power Pi of sensori to its quantization bitsκ = 1, . . . , Li

according to their significance. To this end, we consider the
following problem:

minimize
ωi,κ, ∀i,κ

D(opb)
c

subject to

Li∑

κ=1

ωi,κ = 1, ∀i, ωi,κ ≥ 0, ∀i, κ, (41)

where ωi,κ denotes the fraction ofPi used to transmit the
quantization bitκ ∈ {1, . . . , Li}, andD(opb)

c is given in (17).
Here, the objective function and the constraints are separable
along the sensors; therefore, the optimization problem (41) can

be written asN separate problems fori = 1, . . . , N as

minimize
ωi,κ, ∀i,κ

Li∑

κ=1

4−κe−ζiωi,κPi/2

subject to

Li∑

κ=1

ωi,κ = 1, ωi,κ ≥ 0, ∀κ, (42)

which can be solved independently at the sensor nodei.
Proposition 4: The objective function of (42) is a decreas-

ing function ofωi,κ for all κ and the optimization problem is
jointly convex overωi,κ for all κ.

Proof: See Appendix D.
Using the method of Lagrange multipliers and solving the

associated KKT conditions, we can prove that the optimalωi,j

is given by

ωi,j =
2

ζiPi
log+

(
ζiPi

2ςi (4j)

)

, j = 1, . . . , Li, (43)

whereςi is a Lagrange multiplier associated with the constraint
∑Li

κ=1 ωi,κ = 1. Eq. (43) shows that the power allocation to
the quantization bits is like a waterfilling on the significance
of the bits that is,j where j = 1 corresponds to the MSB
and j = Li to the LSB. From (43), we can see thatωi,j > 0
if and only if ζiPi/2(4

j)ςi > 1. Therefore, we can define a
function f(Ki) = ζiPi/2(4

Ki)ςi such thatf(Ki) > 1 for
κ = 1, . . . ,Ki and f(Ki) ≤ 1 for κ = Ki + 1, . . . , Li. The
multiplier ςi can be given by

ςi = exp

(

1 +
∑Ki

κ=1
2

ζiPi
log 2(4κ)

ζiPi

− 2Ki

ζiPi

)

. (44)

By substituting (44) in (43), we can writeωi,j as follows:

ωi,j =
2

ζiPi

(

1 +
∑Ki

κ=1
2

ζiPi
log 24κ

ζiPi

2Ki

ζiPi

− log
2(4j)

ζiPi

)

≥ 2

ζiPi

(

ζiPi

2Ki
+ log

2Ki

ζiPi

∑Ki

κ=1 4
−κ

− log
2(4j)

ζiPi

)

≥ 2

ζiPi

(
ζiPi

2Ki
+ log

6Ki

ζiPi
− log

2(4j)

ζiPi

)

,

=
1

Ki
+

2

ζiPi
log

3Ki

4j
, (45)

where the first inequality follows from the log–sum inequality
and the second inequality is obtained by the approximation
∑Ki

κ=1 4
−κ =

(
1−4−Ki

)
/3 ≤ 1/3. From (45), it is interesting

to note that

lim
Pi→∞

ωi,j ≈
1

Ki
, j = 1, . . . ,Ki, (46)

which coincides with the classical waterfilling strat-
egy—provided the available power is high enough then it is
equally divided among the the bits.

D. Exhaustive Search Based Solution

For the quantization and power allocation design in Section
III-A through Section III-C, assuming that the total transmit
power of each sensor is uniformly distributed among its
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quantization bits, we solved the (continuous) relaxed problem;
afterwards, we converted the continuous solution to the integer
solution; and then based on this integer solution we allotted
power to the individual quantization bits. This approach sim-
plified the optimization problem because it enabled us to relax
the integrality constraint on the quantization bits. Alternatively,
noting thatPi,κ = ωi,κPi is the power expended to transmit
the κth quantization bit of sensori, we can consider the
following optimization problem:

minimize
Li,Pi,κ, ∀i,κ

D̃
(opb)
t

subject to

N∑

i=1

Li∑

κ=1

Pi,κ ≤ Pt, Li ∈ Z+, Pi,κ ∈ R+, ∀i, κ.

For given Li’s, using the Lagrange multiplier method, the
optimalPi,j for all i and j can be given by

Pi,j =
2

ζi
log+

(
3Fα2

iLiζi
2λ(4j)

)

, (47)

where λ is a Lagrange multiplier associated with the sum-
power constraint. The multiplier can be given by

λ = exp




Pt +

∑

i,l∈A
2
ζi
log 2(4l)

3Fα2Liζi

−∑i,l∈A
2
ζi



 , (48)

whereA := {i, j|3Fα2
iLiζi/2λ(4

j) > 0, j = 1, . . . , Li, i =
1, . . . , N}. Let the optimalPi,j ’s be denoted byP ∗

i,j ’s then
the optimalLi’s can be obtained by exhaustive search as a
solution to the following:

L∗
i , ∀i = arg min

Li∈{0,...,Lmax},∀i
D̃

(opb)
t

(
Li, P

∗
i,j(Li)

)
, (49)

whereLmax ∈ Z++ is some reasonably large integer with
Z++ being the set of all strictly positive integers. Note that
the computational cost of such a search exponentially increases
with N as the search domain expands as(1 + Lmax)

N − 1.

IV. N UMERICAL AND SIMULATION EXAMPLES

Through numerical and simulation examples, this section
substantiates the analytical findings and illustrates the effec-
tiveness of the quantization and power allocation scheme. To
this purpose, we consider an elementary sensor network with
N = 3, unless stated otherwise. Note that for the sake of illus-
tration we have selected a small network size. Nevertheless,
the simulation of a network of any size can similarly be done,
as we shall see later in this section. We assume without any
loss of generality thatθ2 = 1, σ2

s = σ2
si = 1, σ2

ni
= 0.01,

gi = 1, andσ2
wi

= 1 for all i. For the sake of illustration, we
take the following example(dX1

, dX2
, dX3

) = (−0.1, 0, 1.5)
and (dY1

, dY2
, dY3

) = (0, 5, 0), where (dXi
, dYi

) gives the
position of sensori in theXY -plane. Note that we can view
this example as a realization of random deployment of the
sensors. We have taken this example for purely illustrative
purpose which in no-way limits the generality of the results.
We assume that the source lies at the origin of theXY -
plane. Assumingθ1 = 1, the corresponding spatial correlation
values are(ρs,1, ρs,2, ρs,3) = (0.9048, 0.0067, 0.2231) and
(ρ1,2, ρ1,3, ρ2,3) = (0.0067, 0.2019, 0.0054). Note that for
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Fig. 2: Comparison of the quantization and power allocation
schemes AJQPA and UPAQ .

the given spatial correlation values and the observation noise
variances, the lower bound MSE isD0 = 0.1875. The total
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estimation distortion cannot be below this value no matter
how finely we quantize the sensor observations and how large
the transmit power may become. Unless stated otherwise, all
numerical and simulation examples in this work are based
on this system setup. In the figureslog(.) = log10(.). In the
sequel the quantization and power allocation design presented
in Section III-A through Section III-C is referred as AJQPA-
Ia and the exhaustive search based design in Section III-D as
AJQPA-Ib.

First we compare the AJQPA-Ia design (under Algorithm1)
with a uniform power-allocation based quantization (UPAQ)
scheme. The UPAQ scheme distributes power uniformly
among the sensors that is,Pi = Pu = Pt/N for all i. The
quantization bitsLi’s for the UPAQ are calculated in the same
way as in the AJQPA-Ia design. The results are plotted in Fig.
2, which shows that the AJQPA design outperforms the so-
called UPAQ scheme in terms of the reconstruction MSE. This
superior performance comes from the fact that, contrary to the
UPAQ, the AJQPA design quantizes finely and allocates more
power to the sensor(s) having favorable correlation values
while some sensors with less favorable correlation values are
turned on at higher total powerPt or completely switched
off. Note that with increasingPt, the achieved distortion
approaches the lower boundD0 = 0.1875. Moreover, at
high Pt the AJQPA design allocates power uniformly among
the sensors, and the quantization bits also becomes equal
across the sensors which saturates at some finite value—the
AJQPA design converges to the UPAQ scheme. The exam-
ples in the sequel only consider the AJQPA design without
including comparison with the UPAQ scheme. Nevertheless,
the AJQPA design always performs better than the so-called
UPAQ scheme.

Fig. 3 compares the reconstruction distortions, and the
associated quantization bits and power allocations obtained
from Algorithm 1 for the solution of continuous relaxation,
denoted as continuous solution (CS), and the integer solution
(IS) obtained from the CS by Algorithm2 proposed under
the AJQPA-Ia scheme. The figure also plots the quantization
bits, the transmit power of the sensors, and the associated
distortion under the scheme AJQPA-Ib. In the figure, the
quantities concerning the AJQPA-Ib are denoted by the exten-
sion “-ES”—signifying the exhaustive search based solution.
From the figure, we can observe that, under the AJQPA-
Ia, the CS obtained from Algorithm1 and the IS obtained
from Algorithm 2 give distortionsD̃(upb)CS

t and D̃
(upb)IS
t ,

respectively, which monotonically decrease withPt. Simi-
larly the distortion D̃

(opb)IS-ES

t obtained from the AJQPA-
Ib shows a monotonic decrease withPt. Moreover, note
that D̃(opb)IS-ES

t ≤ D̃
(opb)IS
t ≤ D̃

(upb)IS
t , where D̃

(upb)IS
t

denotes the distortion when power allotted to each sensor
is distributed uniformly among its quantization bits whereas
D̃

(opb)IS
t denotes the distortion when power of each sensor is

allotted to its bits according to their significance. To thisend,
Fig. 4 plots the fraction of the power of each sensor allottedto
transmit its individual quantization bits. We can observe that
the MSB is given the largest share and the LSB the smallest
share in the transmit power of the respective sensor.
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Fig. 3: Comparison of the quantization and power allocation
schemes AJQPA-Ia and AJQPA-Ib.

From Fig. 3, we observe that the distortioñD(opb)IS
t

achieved by the AJQPA-Ia design and the distortion
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t achieved by the AJQPA-Ib design are quite close
to each other. This is because the quantization bits and the
power allotted to the sensors by the two designs match quite
well. This observation shows that, compared to the exhaustive
search based design (i.e., AJQPA-Ib), the design proposed
under the AJQPA-Ia scheme works quite well. The simulation
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Fig. 6: Distortion performance comparison of the quantization
and power allocation schemes AJQPA-Ia and AJQPA-II for
N = 3.

examples in the sequel focus on the design AJQPA-Ia, unless
stated otherwise.

Examples in Fig. 5 compare the theoretical reconstruction
distortion with that obtained from the actual system simula-
tion. We can observe that the distortion termDm is negligibly
small andDt ≈ D+Dc. Moreover, the distortioñD(opb)IS

t is a
quite tight upper bound forD+Dc for all Pt values where any
of the sensors quantizes with more than one bit (c.f., Fig. 3).
These observations reveal that the pseudo-quantization noise
model combined with upper bounding the distortionDt with
D̃

(opb)IS
t give quite good results.
Next, in Fig. 6 we compare the performance of the quan-

tization and power allocation scheme AJQPA-Ia with that of
the scheme in [20] which is referred here as AJQPA-II. In the
figure, Dt is the total distortion achieved by the AJQPA-Ia
scheme;Dt-R is the distortion achieved by a scheme where the
CS for the quantization bits from the AJQPA-Ia is converted to
the integer domain by simple rounding and then we reallocate
transmit power to the rounded bits as is done in AJQPA-Ia;
Douq -I , Douq -II , andDouq -III denote the distortions achieved
by the AJQPA-II scheme. TheDouq -I is obtained by solving
the optimization problem in [20] with the{Li}Ni=1 obtained
from the AJQPA-Ia (c.f., Fig. 3),Douq -II is obtained by solving
the problem of [20] by exhaustive search over{Li}Ni=1, and
Douq -III is obtained by evaluating the objective function of the
problem in [20] for both{Li}Ni=1 and {Pi}Ni=1 provided by
the AJQPA-Ia. TheD0 denotes the lower bound distortion. We
can observe thatD0 ≤ Douq -II ≤ Douq -I ≤ Dt ≤ Dt-R. The
difference betweenDt and Dt-R highlights the effectiveness
of the Algorithm 2 under the AJQPA-Ia scheme for obtaining
the IS from the CS vis-̀a-vis the simple rounding scheme.
Moreover, we can see thatDt andDouq -III are quite close to
both Douq -I andDouq -II for a wide range ofPt values. This
illustrates the effectiveness of the AJQPA-Ia scheme when
compared with the computational complexity of the AJQPA-II
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Fig. 8: Distortion performance comparison forN = 30:
theoretical versus simulated.

scheme, especially in the case ofDouq -II .
The simulation examples thus far are based on a network

that consists of three sensors for which the correlation values
are fixed. Next, we consider a sensor network comprising thirty
sensors that isN = 30, which are deployed in a fifty-by-
fifty grid as shown in Fig. 7. We assume that the underlying
source is located at the center of this grid. Similar to the three-
sensor case, we assumeθ2 = 1, σ2

s = σ2
si = 1, σ2

ni
= 0.01,

gi = 1, and σ2
wi

= 1 for all i. For this network setup,
we consider two cases having different correlation structure:
Case-1 with θ1 = 10 and Case-2 with θ1 = 10, where θ1
controls how fast the correlation decays with the distance
(c.f., (2)). For these cases, Fig. 8 compares the theoretical and
simulated distortions. We can see that the distortions, both
theoretical and simulated, decay with increasing correlation
that is, increasing value ofθ1. Similar to the three-sensor case,
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Fig. 9: Distortion performance comparison of the quantization
and power allocation schemes AJQPA-Ia and AJQPA-II for
N = 30.

we observe thatDt ≈ D+Dc with Dm being negligibly small.
Finally, Fig. 9 gives distortion comparison for the AJQPA-
Ia and AJQPA-II schemes, where similar observations can
be made like the three-sensor case in Fig. 6. Note that the
Douq -II is not included in Fig. 9 because it is intractable to
obtain for N = 30. To obtain Douq -II , we need to solve
the optimization problem of [20] by exhaustive search for
{Li}Ni=1 over {0, . . . , Lmax}. For example, forLmax = 9
we need to solve the problem for1030 times, which is not
a computationally manageable task within a reasonable time
frame.

V. CONCLUSION

In this contribution, we have pursued a design to jointly
quantize the sensor observations, which are correlated across
sensors, and allocate power to transmit the observations to
the FC with the goal to reconstruct the source with minimum
distortion. Based on the assumption of pseudo-quantization
noise model and the quasi-optimal LMMSE estimate, we
showed that the quantization and power allocation problem
can be solved efficiently. Based on the solution, we proposed
a block-coordinate descent type algorithm which iteratively
optimizes the quantization and power allocation. Moreover,
we showed that in addition to the power allocation across the
sensors, there is a room to optimize power allotted to transmit
individual quantization bits of each sensor. We illustrated
the effectiveness of the proposed designs with a few simple
examples. We have seen that sensors having high correlation
and low cross-correlation values and better observation quality
compared to other sensors quantize their observation with finer
resolution and transmit at higher power. It was also shown
that the proposed design outperforms a quantization scheme
based on the uniform power allocation. Finally, from the
simulation examples it appears that the theoretical distortion
approximates the simulated value quite well when any of
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the sensors quantizes with more than one bit. The future
work will consider the effect of imperfect knowledge of the
correlation, the observation noise, and the communication
channel. In this work, we considered the system where FC
decodes the received signal before combining them to form
the final estimate. However, the future work may consider
estimation based on the soft received signals from the sensors.

APPENDIX A
CHANNEL BIT ERRORSCONTRIBUTION TO DISTORTION

The mean-squared error ofŝ′ with respect toŝ is denoted
by Dc which can be written as follows:

Dc = E

[

(ŝ′ − ŝ)
2
]

= E





(
N∑

i=1

αi (m
′
i −mi)

)2




≤ N

N∑

i=1

α2
iE

[

(m′
i −mi)

2
]

, (50)

using the Cauchy–Schwarz inequality, wherem′
i is the quan-

tized message received through the actual channel andmi is
the quantized message received error free at the FC via ideal
channel. The messagesmi andm′

i haveLi bits each and can
be written as follows:

mi =

( Li∑

κ=1

bi,κ2
Li−κ − 2Li−1 +

1

2

)

∆i,

m′
i =

( Li∑

κ=1

b′i,κ2
Li−κ − 2Li−1 +

1

2

)

∆i, (51)

where bi,κ, b
′
i,κ ∈ {0, 1} for all i and κ. The sensori

transmits the quantization bitκ, κ = 1, . . . , Li, to the FC using
BPSK modulation and powerωi,κPi. The associated bit-error
probability isεi,κ = Q

(√
ζiωi,κPi

)
whereζi = g2i /σ

2
wi

. With
this, we have

E

[

(m′
i −mi)

2
]

= ∆2
iE





(
Li∑

κ=1

2Li−κ
(
b′i,κ − bi,κ

)

)2




≤ ∆2
iLi

Li∑

κ=1

22Li−2κ
E

[(
b′i,κ − bi,κ

)2
]

, (52)

where (b′i,κ − bi,κ)
2 is a Bernoulli distributed random vari-

able—one with probabilityεi,κ and zero with probability
(1− εi,κ), andE

[
(b′i,κ− bi,κ)

2
]
= εi,κ. Therefore (52) can be

written as

E

[

(m′
i −mi)

2
]

≤ ∆2
iLi

Li∑

κ=1

22Li−2κεi,κ

= 4W 2Li

Li∑

κ=1

2−2κεi,κ. (53)

Substituting (53) in (50) we get

Dc ≤ 4NW 2
N∑

i=1

Li∑

κ=1

α2
iLi4

−κεi,κ

≤ 4NW 2
N∑

i=1

Li∑

κ=1

α2
iLi4

−κe−ζiωi,κPi/2, (54)

where the last inequality follows fromεi,κ ≤ e−ζiωi,κPi/2.
Now, assuming that the total transmit powerPi of sensori
is divided equally among the quantization bitsLi’s that is,
ωi,κ = 1/Li, we getεi,κ = εi = Q

(√

ζiPi/Li

)
for all κ.

Now, from (53) we can write as follows:

E

[

(m′
i −mi)

2
]

≤ 4W 2Liεi

Li∑

κ=1

2−2κ

= 4W 2Liεi
1− 0.25Li

3

≤ 4W 2

3
Liεi ≤

4W 2

3
Lie

−ζiPi/2Li . (55)

Substituting (55) in (50) and assumingF = 4NW 2/3 we get

Dc ≤ F

N∑

i=1

α2
iLie

−ζiPi/2Li . (56)

APPENDIX B
CONVEXITY OF D̃

(upb)
t OVER γi ’ S

With respect toγj ’s, the second-order partial derivatives of
D̃

(upb)
t given in (27) can be written as follows: For alli 6= j,

we have∂2D̃
(upb)
t /∂γj∂γi = 0; moreover, for alli, we have

∂2D̃
(upb)
t

∂γ2
i

= 2Fβ2
i U[i,i] + F 2β2

i γiU[i,i]

2
(
1− γiσ

2
i

)
+ 1

(1− γiσ2
i )

(
βiζiPi

4 log(2)L2
i (1− γiσ2

i )

)2 ∂U[i,i]

∂γi
≥ 0,

because each of the term in the summation is positive. Thus
the Hessian ofD̃(upb)

t with respect toγi’s is diagonal and
each diagonal element is positive meaning that the Hessian is
positive semidefinite, which proves that the function is convex
over γi’s for givenPi’s andβi’s.

APPENDIX C
PROOF OFPROP. 3

The first-order derivative of the functioñD(upb)
t with respect

to Pi is ∂D̃
(upb)
t /∂Pi = −Fγ2

i β
2
i ζiU[i,i]/2Li, which is

always negative for anyPi. This tells us thatD̃(upb)
t is a

decreasing function ofPi.
The second-order derivatives of̃D(upb)

t with respect toPi’s
are given as follows:∂2D̃

(upb)
t /∂Pj∂Pi = 0 for all i 6= j

and∂2D̃
(upb)
t /∂P 2

i = Fβ2
i γ

2
i ζ

2
i U[i,i]/4L

3
i ≥ 0 for all i. Thus

the Hessian ofD̃(upb)
t with respect toPi’s is diagonal and

is positive semidefinite. The positive semidefiniteness of the
Hessian means that the function is jointly convex overPi’s
for given quantization bits.

APPENDIX D
PROOF OFPROP. 4

As the constraints of the given optimization problem are lin-
ear, therefore for the problem to be convex it suffices to show
that the objective function is convex over the optimizationvari-
ablesωi,κ for all κ. To this purpose, letf(ωi,1, . . . , ωi,Li

) =
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∑Li

κ=1 4
−κe−ζiωi,κPi/2. For κ, ι ∈ {1, . . . , Li}, we can show

that

∂2f

∂ωi,κ∂ωi,ι
= 0, ∀κ 6= ι;

and

∂2f

∂ω2
i,κ

=
(
4−κ−1

)
ζ2i P

2
i e

−ζiωi,κPi/2 ≥ 0, ∀κ,

which tells us that the Hessian off(ωi,1, . . . , ωi,Li
) is positive

semidefinite and thus proving that the given function is jointly
convex overωi,κ’s. Furthermore, note that

∂f

∂ωi,κ
= −ζiPi(4

−κ)

2
e−ζiωi,κPi/2,

which is always negative for any validωi,κ and thus
f(ωi,1, . . . , ωi,Li

) is a decreasing function overωi,κ.
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