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Abstract—We study the problem of joint quantization and in the same geographical location. In addition, obsermatio
power allocation in wireless sensor networks where spatially npise and communication channel may not have the same
distributed sensors observe a Gaussian random source, quantize ., gitions across all sensors. Thus independent qudotizat
the resulting noisy observations, and transmit over orthogonal o . . .
fading channels to a remote fusion center (FC). The role of and transmlss!on of the Obser\_/atlons is not an optimalegyat
the FC is to reconstruct the source with minimal distortion For estimation of a Gaussian source under mean-squared
using linear minimum mean square error estimation rule. In distortion measure, in the information theoretic perdpecit
this paper, we undertake the design of joint quantization and has been shown in [1] that the digital transmission is ogtima
power allocation based on the following optimization problem: j, 5 \WwSN observing the source where sensors have orthogonal
minimize the reconstruction distortion for a given total network . . .
power consumption. To address this problem, at each sensor nodele]""m'":"l_s.to the FC. Th'S.rESUH combined with the adva}ntages
uniform scalar quantization is assumed. Moreover, assuming Of the digital communication scheme—such as modularity and
pseudo-quantization noise model we show that the problem can robustness, among others—motivate us to study the problem

be solved using a block-coordinate descent type algorithm which of adaptive joint quantization and power allocation (AJQPA
iteratively optimizes the quantization bits and the power alloca- ;4 \y/SNs.

tions. The algorithm takes into account the spatial correlation, In 2 tizati d I fi h .
the observation noise, and the channel quality of the sensors. n [2] a quantization and power allocation scheme is pro-

Numerical and simulation examples corroborate the analytical POsed where a parameter is estimated based on the best linear

results. The examples illustrate that the proposed design holds unbiased estimation (BLUE) rule which does not exploit the
a considerable performance gain compared to a quantization spatial correlation. Krasnopeev and his colleagues in ¢8} ¢
scheme based on the uniform power allocation. sider quantization of the observations where observatiisen
Index Terms—Digital modulation, orthogonal multiple access is correlated across sensors. In [4], the authors propasele-t

channel, parameter estimation, quantization, resource manage- off between the number of active sensors and the quantizatio

ment, spatial correlation, wireless sensor neworks. bits of each sensor with the objective of minimizing the

estimation MSE subject to a network-wide rate constraint.

. INTRODUCTION The work in [5] and [6] considers estimation of a source

by the BLUE rule with binary modulated transmission of

W IRELESS sensor networks (WSNs) consist of spatialie quantized observations. Some other related works appea
distributed sensors that cooperatively monitor physicg| [7]-[10]. More recent work in [11] presents the idea

or environmental conditions. The sensor networks are Chfperein sensors quantize their observation using idernfe:
acterized by the limited availability of energy, bandwidthyj; q,antizers based on the minimization of CearRao lower
and computational power. Our objective is to reconstruet th, nq (CRLB) on the estimation error. Another related work
underlying signal subject to resource constraints so that rappears in [12], which deals with the one-bit quantizer gtesi
overall distortion for instance, mean square error (MSE) Bg; estimation in WSNs. For a vector parameter estimation
minimized. We consider a system in star topology whefg \ygNs, [13] presents a joint scheme to compress the
sensors transmit quantized version of their noisy obsenat ., ,iijimensional observation at each sensor to a scalaeval

via some orthogonal multiple access scheme (e.g., TDMA Qp then design a one-bit quantizer to quantize the congmtess
FDMA) 10 a central processing unit called fusion center (Fiphye with a target to minimize the CRLB distortion mea-
which produces a global picture of the physical phenomenal),.e These works do not consider the transmission of the
The sensors have partial and correlated observations of Hb%ervations over non-ideal channels. The exposition 4} [1
source. The correlation exists where sensors measure d@{gyies the problem of optimal network size in the frame work
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guantization of the sensor observations. In fact senspiglgi // _

amplify and forward their noisy analog observations to the F n VAT
In this work, we present a joint design for quantization af{ | |
power allocation in WSNs which takes into account the spat

correlation and cross-correlations of the observatidresgual-
ity of the observations, and the quality of the communigatig
channel from sensors to the FC. For solution to the undeylyi
optimization problem, we propose a block-coordinate desce
type algorithm which iteratively optimizes the quantipati
bits and the transmit powers while minimizing the distartio
function.

At each sampling instant, the sensors quantize the obser-
vations employing the uniform scalar quantization scheme, Fig. 1: Block diagram of the system.
encode the quantization indices, and transmit the resgultin
bits to the FC. The FC reconstructs the underlying source
based on a linear minimum mean square error (LMMSE) distortion performance which compares favorably with
estimation rule. The quantization and power allocatioresah that of [20]. Compared to the work by Xiao and his
targets minimization of the reconstruction distortion jsabto colleagues [2], where a joint quantization and power
a constraint on the total transmit power of the sensors. iBo th  gjlocation scheme is proposed, the underlying system
end, an AJQPA scheme is presented in [20] where we do not model (as mentioned before), the optimization problem,
make any simplifying assumption be it on the quantization and the resulting solution are notably different for the
noise or on the contribution of the channel errors to theltota  AJQPA scheme presented in this paper. The joint quanti-
reconstruction distortion. That scheme is computatignek- zation and power allocation problem in [2] under certain
penSive and becomes intractable with the network size. I%Sp assumptions_the given target bit-error probabmty for the
the complexity issue, the AJQPA scheme discussed there unde sensors, the choice of the sum of the squares of the

reasonably simple scenarios (e.g., small network size) can sensor transmit powers as the objective function, and so
serve as a baseline approach for performance comparison and on—is transformed into an optimization problem over
can be used as a tool to check the validity of the simplifying  the quantization bits only. The sensor transmit powers
assumptions of other schemes. In our pursuit to simplify the are obtained as a function of the quantization bits for a
AJQPA problem, we use in the current work the pseudo- fixed bit-error probability. However, in the current work
quantization noise model [21], [22]. Based on that, themeco e jointly optimize the quantization bits and the transmit

struction distortion is formed in two steps: Firstly, assugn powers (and thus also optimize the bit-error probability).
error-free transmission of the quantized sensor obsenati The rest of the paper is organized as follows. Section I

to the FC we characterize the distortion; subsequently thgsqrines the network setup under consideration. In Sectio
contribution of the channel errors tp the distortion 1S qdmi [, we formulate the AJQPA problem and outline its solution
and added to form the total distortion. Based on this diistort To substantiate the analytical findings, Section IV present

function, to solve the AJQPA problem we propose a blocky, e nymerical and simulation examples. Finally, Section V
coordmatg descent type algonthm which scales well with ﬂbrovides some concluding remarks.
network size. The proposed design leads to better perfarenan
compared to a quantization scheme based on uniform power
allocation to the sensors.
Compared to the existing literature, the contributionshist ~ Consider the system model shown in Fig. 1, wheve
work lie in the following aspects: spatially distributed sensors observe an unknown Gaussian
« The proposed design for AJQPA in the sensor network8ndom source ~ A (0,07). Each sensor, say sensprhas
jointly exploits the spatial correlation, the observatiog Partial observations; ~ N'(0,02,) of the sources. The
noise, and the channel quality of the sensors. In WSppservation is corrupted by additive noisge ~ N(0,07,)
applications where for example, the underlying sourd®Ich that the noisy observation at the sensor is given by
is acoustic pressure, heat, or chemical concentration, the
sensor observations are better characterized by spatial
correlation based observation models as in [15], [17lwhere n; is independent across sensors, and is also inde-
[19]. However, the existing works on quantization for egpendent ofs and s;’'s. We assume that the sensors employ
timation in the sensor networks, like [2], assume that thhe uniform scalar quantization scheme to quantize their
underlying source is spatially invariant and deterministi observations. We also assume that the sensors transmit the
but otherwise unknown. Thus they do not consider trguantization indices to the FC via orthogonal channels;revhe
spatial variations of the source and do not incorporatee channels experience flat fading independent over tirde an
any a priori knowledge about the source. across sensors. The fading channels, with gain fagtors|h;|
o The proposed AJQPA scheme gives solution which fer all i, are assumed to be perfectly known at the FC and do
markedly simpler than the scheme in [20] and givesot change during the estimation of each observation sample

Fusion Center (FC)

Source §)

.

Il. SYSTEM MODEL

Z1:Sl+n“ Z:1,,N, (1)



The w; ~ C/\/(O,Qa?ﬂ?) denotes the receiver noise, which igo the FC. The encoding of the quantization indices does not
independent across the sensors, and is also independentooisider entropy coding that is, a fixed length coding scheme
s, si's, andn;'s. In Fig. 1, theEncod block at each sensoris used. Thus, we requirg; = log,()M;) bits to encode the
node performs two functions: It encodes the indices of the; indices, which we call as the quantization bits. Moreover,
guantized values according to some labeling rule for exampin this work, we do not consider channel coding.
natural binary code, and then modulates the resulting dig®(  For the uniform scalar quantization, the quantization fabun
called here quantization bits) using some digital modaiati aries can be written in terms of the quantization interal
scheme for example, BPSK modulation. On the other haras u;, = (2k — 2 — M;)A;/2 for k = 2,..., M, with
eachDecod block at the FC performs the converse functions; ; andw; s, +1 denoting the greatest lower bound and the
of the correspondingncod block—that is, demodulation andlowest upper bound on;, respectively. The corresponding
mapping of the received bits to the reconstruction values. quantization values are given by, , = (2k — 1 — M;)A; /2

We assume that the soureethe observatiors; at sensor for k =1,..., M;. As z; is a zero-mean Gaussian distributed
i, and the observatios; at sensorj are jointly Gaussian random variable, therefore for some reasonably large value
distributed having zero mean and covarian€es{s,s;} = of W we havep(|z;| > W) =~ 0. As a consequence we
0505, ps,in Cov{s,sj} = 0s04,ps;, and Cov{s;,s;} = can assume that,; = —W and u; r,+1 = W. In this
0s,05,pi; for all i and j. Note thatp,; specifies the cor- particular case, the quantization interval sizg can be given
relation betweens and s;, and p; ; specifies the correlation by A; = 2W/ (25 — 1) ~ 2W/2%:.
betweens; ands;. Moreover, we assume that the samples of
each ofs, s;, n;, andw; are independent in time. The spatialll. QUANTIZATION AND POWERALLOCATION: PROPOSED

correlationp, ; and cross-correlatiop; ; coefficients can be APPROACH
modeled as follows: Let D; be the estimation distortion of the underlying source
C_—(ds,i/61)%2 o —(di;/01)%2 at the FC. The quantization and power allocation scheme is
pS,’L =e€ 9 pz,j =e€ 9 (2)

based on minimization of the distortion subject to a corrstra
respectively. Wherd ; is distance between the soureend on the total network power consumption as follows:

the sensori, d; ; is distance between the sensadrsind j, L ,

0, > 0 is a range parameter which controls how fast the Hille:{?\%e Di(Li, Piji=1,...,N)

correlation decays with the distance, ahet 6, < 2 is called N

a smoothness parameter [15]. subject to ZPi <P,Li€Zy, PbeR,, Vi. (5
When the sensor observationgs are available at the FC i=1

then the optimal estimator in the minimum MSE sense is thgnere D, (L;, P;;i = 1,..., N) is the distortion functionZ;

conditional mean ofs given z;’s that is, 50 = E[s|zi,Vi], and P, are the quantization bits and the transmit power of
where E denotes the mathematical expectation. Under t@nsor;, respectivelyZ, andR, denote the set of positive
jointly Gaussian assumption of and z;'s, the conditional jntegers and the set of positive real numbers, respectitely
mean estimator turns out to be linear and is called the LMMSE) the constraint on the total power consumption enables
estimator which can be written @ = ¢” (Cs+Cn) " 'x With 3 fair comparison between the networks of different sizes.

the associated MSE distortion given by Moreover, putting a cap on the total power consumption &mit
Do =02 — cT(Cs + Cn) " Le, 3) interference with the neighboring nt_etwork;, conservesgne
and also makes sense from the view point of global energy
wherec = E[xs], Cs = E[ss”], andC,, = E[nn”] with x = efficiency [24].
[21,...,2n]T, s = [s1,...,sn5]T, andn = [ng,...,ny]|" In the sequel, we solve the optimization problem (5) based
[23]. Note that[.]” denotes the matrix—vector transpose opeon an approximation of the distortion function. This approx
ation. mation is obtained by assuming the pseudo-quantizatiosenoi

Remark 1. The estimator which achieves the distortiby model, which is a simplified model of the quantization praces
is called a clairvoyant estimator and it can be used as[2l], [22]. We use thus obtained distortion function as a
performance benchmark, as the distortion achieved by aswyrrogate forD; and solve the problem (5).
estimator designed to minimize the MSE distortion measure

is lower bognded byDy. o _ A. Preliminaries and the Problem Solution
We can view the quantization functiap; at sensor as & pq qanization noise is an error or a distortion introdiice

mapping which maps the observatio to on.e of the finite by the quantizer and is defined as a difference between the
rational numberg(m,1, ..., mi,n, } @s follows: quantizer output and the input that ig, := m; — , for all

Qi : i — my i, which is bounded as-A;/2 < ¢; < A;/2. In general,
the quantization noisg; is a non-zero mean random variable
which is not uniformly distributed, and is correlated with
where u; ;’s are quantization intervald; boundaries and the {g;},,, and the inputs{z;} . However, it has been
m; ;'S are quantization values (also called representation gftown in [21] that when quantizing the correlated Gaussian
reconstruction values). The sensbrencodes the index: distributed variablegz; } Y | with uniform quantizers, surpris-
corresponding to the value; ;, and transmits the resulting bitsingly the quantization noiseﬁqi}f\il are almost uncorrelated

mi =My, TOru;p < <uipyr, k=1,...,M;, (4)



and independent from each other as well as from the inpdtdlowing we determine the weighting factorg’s such that
{fci}f\il for extremely rough quantization (values of the quarthe distortionD be minimize. The distortio = E[(5— s)?]
tization step sizeA; up to o,, or more) and for very high can be characterized as follows:

correlation coefficients (but strictly less than 1) betweery N
x; andz;. Morepver, all of the quantization npiseg SR D=o2+ ZO‘? (02 + 03) +
can be approximated as zero-mean and uniformly distributed im1
random variables betweettA,/2,...,£AN/2 with corre- N N N
sponding varianceg\? /12, ..., A% /12, respectively; that is, Z Zaiozjasiasjpi,j - QZaiUSUsiPsm (10)
the quantization noise variance for sensas i=1 j##i i=1

2 _ w2 vi ©) whereo? = ol +op . Fori=1,. .., N, by taking derivative

) of (10) with respect tay; and setting it equal to zero, we get

0(11: 3(2Li _ 1)2’
o ) N the following expression for the weighting coefficients ttha
Consequently, the quantization noidgs},_, can be modeled minimizes the distortiorD:

as uniformly distributed and statistically independeniath N
other and of the input{z;}.,. In what follows, we use o, = Pei%sTs: ~ 221 BiNi0s.0, Py _ Brvi.  (11)
this quantization noise model to design the AJQPA scheme. o? + o2 L

Thergm, to form the es’glmatg of t'he sourgeand to char- Where ; and~; are, respectively, defined as

acterize the reconstruction distortion, we adopt a twp-ste

procedure: In the first step, we assume that the quantized - 1 :
. . . ’yl 2 27 VZ7 (12)
signals from sensors arrive error free at the FC; then in the o; +og,
second step, we incorporate the contribution of the bitrerro N
caused .by the channel. This. kind qf approach 'Fo estimation Bi = pe.iCs0s, — Zﬁj'}/jaslo's] pij, Vi (13)
over noisy channels is used in the literature for instanee, s oy ’
(2], [6]. .
The FC employs an LMMSE estimator to reconstruct thig'om (6) and (12), we can express as a function ofy; as

source from the quantized signals of the sensors.mbebe follows:

the quantized message received through the actual chamhel a W2y,

m; be the quantized message received error free at the FC. We L; =logy | 1+ 30— 0?) ) (14)
can write estimate$ and s’ as follows: Wi

N N Eg. (13) forms a set ofN simultaneous linear equa-
Zaimn § = Zaim; (7) tions which in the rlnatrix—vector notation can be written as
i=1 i=1 B = (CyCs+1) c; where 3 = B1,....8n8)7, C, =
wherea,’s are the LMMSE weighting coefficients. The totatliag (71 -, ), andCs = C, —diag (07, 0% ). Note

8

mean-squared reconstruction distortion at the FC thatiSEMthat c = E[xs] and CsT: E[SST} with x = [z1,...,2n]"
of &' with respect to the actual parametecan be defined as@nd s = [s1,...,sny]". It can be shown that the vector
[ . a = |ai,...,ay]|T can be written as
Dt = E{ s |h v‘} (§/ — S) -
8,8i,Mi, Wi i,V _ - 1 —1
= B[ — s+ B[ — 57+ 2816 — 96— ), (8) @=0yf = (Gt G7) e (%)
—D =D, =Dy, With (11) the distortion in (10) simplifies to
where D accounts for the distortion arising from the spatial ) N
correlation, and the quantization and observation noises; D=o;— Zaia—SO—Sipsyi
accounts for the distortion from the channel errors; dnhgd i=1 )
characterizes the mutual term. Based on the Cauchy—-Schwarz =o?—a’c=02-c" (@S + C;l) c, (16)

inequality we can upper bound the distortién as follows:
. ) g S— _ where note that the components ©f, that is,~; is function
Dy <E[(5 = 9)*] + E[(3' = 8% + 2VE[( — 3)2E[(5 — )] of L, for all i (cf., (6) and (12)).
= (\/E+ \/Dic)Q < 2(D + D.) = 2D 9 Note that the coefficiente;’s are optimal for the estimate
. _ ) $ in the MMSE sense. We use the same weighting coefficients
whereD; = D + D.. To obtain (9) we have use[zy])” < to form the estimaté’ from the quantized sensor observations
E[2?]E[y?] in the first inequality and(3>°;, Dx)” < received through the non-ideal channels (c.f., (7)). Thatty
K Y",_, D in the second inequality. In the subsequent deve can views and &’ in (7) as optimal and pseudo-optimal
velopment for the AJQPA design, we target minimization dEIMMSE estimates, respectively. We can see from (11) that
Dy. To this purpose, first we characterize the distortidmnd the variable; naturally factors out fromy; for all i. The
subsequently the distortioP,. advantage of defining the auxiliary variabless and §;'s in
The distortionD can be viewed as the MSE of the estimatthe context of the joint quantization and power allocatidgt w
§ in comparison to the original signal assuming that the become clear in the subsequent development. There, we shall
guantized signals;’'s are perfectly received at the FC. In thesee that these variables enable us to formulate the problem




as a convex optimization problem and based on the resultingere U = diag (25;1 Li4—re=Cwnnl/2 2521 Ly

solution we propose a block-coordinate descent type ahgori 4=re=Cnwn Py /2) and Dt(op‘ﬂ, similarly ppb) given in

which can achieve monotonic decrease in the distortion. (17), signifies that the poweP; of the sensoi is assigned to
In the characterization oD, we have assumed error freethe quantization bit$,; according to their significance—where

transmission of the quantized sensor observations to Wb in the superscript signifies the optimal power allocation
FC—that is, we assumed ideal communication channels. Hows-the bits.

ever, in practice, the channels from the sensors to the FGn order to simplify the optimization process and for the
may subject to fading and additive noise causing bit errogake of mathematical tractability, first we assume that the
which further increase the distortion. The effect of chdnngya| transmit powerP; of sensori, for all i, is divided

errors on the distortiorD; i; accou.nted. for by the tere.  equally among the quantization bits of the sensor that is,
We assume that the receiver noise is Gaussian distributgd. — 1 /1, for all x and use the resulting distortion function

s

Herein we also assume that the channel does not chagg&jerive an algorithm for the AJQPA by solving a relaxed
during the transmission of the quantization bits corresii proplem. Afterwards, we allocate power of each sensor to its
to each observation cycle—that is, during the transmissi%antizaﬂon bits according to their importance.

of L; bits—and the channel gain is perfectly known at the Proposition 2: Under the assumption of uniform power

FE' Moreover, we as?urﬁgbthat the s_ensclxqualntmes t:le allocation to the bits, the channel distortion teid can be
observations to one of t quantization levels, encodes, oo pounded as follows:

the corresponding quantization index usidg-bit natural
binary code, and subsequently transmits these bits to the FC

N
using BPSK modulation scheme. Suppose sefisexpends D. < anzLie—ciPi/m .— p(upb) (19)
wi, > 0 fraction of its transmit powerP; to transmit the = ¢
xth quantization bitx = 1,...,L;, then the corresponding

bit-error probability is given bye; .. = Q(y/GwirP;),
where (; = ¢?/o2 defines the so-called channel SNR and

i

S w;,. = 1. For the contribution of channel bit errors to  Now with (19) the distortionD; can be written as follows:
the distortion, we have the following proposition.

Proposition 1. Under the preceding assumptions, the con- _ N N
tribution of channel bit errors to the distortion, charaiged  D; < 02 — Zaiasasips,i + FZa?Lie_C'iPY‘/Mi

Proof: See Appendix A O

by D, = E[(8' — 8)?], can be upper bounded as follows: i=1 i=1
- —1 - —1
. —o? - (G4 CY) et Fe” (Gt CTY)
D. < 3F 2[4 ReGiwin /2 .= plopb) 17 - -1 -
~ ’LZZI l; az (& c 9 ( ) U (CS 4 C;l) c = Dgupb), (20)
_ 2

where " = ANW?/3. whereU = diag (Lie=¢P1/201 . Lye ¢vPN/2Lv) Note
Proof: See Appendix A. [ that the distortionsD{"*® and DE“pb) signify that the total

Remark 2: From (17) we can see that the contribution opower F; of each sensoi is distributed uniformly among its
the errors in quantization bits — 1 L. for all i. to guantization bitsL;—where upb in the superscript signifies

the distortionD,, is according to the importance of the bits.Ihe uniform power allocation to the bits.

The distortion decreases exponentially with the bit-index NOW we base the design of the quantization and power
such that the most significant bit (MSB) that is= 1 when allocation scheme on an bopt|m|zat|on problem where we
received incorrectly incurs the highest penalty whereas tRlnimize the distortionD{ """’ subject to a constraint on the
least significant bit (LSB) that is; = L; the smallest penalty SUm power over all sensors as follows:

in terms of MSE. Therefore, to minimize the distortion, ther

is a room to optimize transmit power across the sensors as minimize f)é“pb)

well as along the quantization bits of each sensor. Libi,¥i

. . .o~ N
With (16) and (17) the distortio; becomes subject to ZPi <P, LicZ, PcR., Vi (21)

i=1

=

D, =D+ D, §a§—20@03051p57i+3F ) ) o ) )
P Since L; is a positive integer variable (i.el,; € Z.), the

N L optimization over the quantization variable € Z, and the
Z Z a2 LA Fe Giwinbi/2 transmit powerP; € R constitutes a mixed integer nonlinear
=1 r—1 programming (MINLP) problem whose computational com-

plexity increases exponentially with the problem size [2i]
order to simplify the problem, we relax the integrality bf
and allow it to take positive real values (i.d.; € Ry ).
With this relaxation assumption we can consider the foliayyvi



problem. descent-type algorithm is the following: Giveri®) € P in
- iteration x, find v(**1) € P such that
minimize DEUP )

unimiz pwb) (,Y(H-‘rl)) < Dlet) (70»»)) (25)

N
1
subject to ZPi <P,0<v< P, >0, Vi, (22)

o2’ by taking a step in the descent directi®®); that is,y("t1) =
") 47 @) wherer is a positive step-length parameter. At
where the lower bound and the upper boundypeome from ~(%) the ®(*) is a descent direction provide(qﬂ(ﬁ))T@(R) <
(12) for L; = 0 andL; = oo, respectively. Note that we choose) holds. To find the descent directiongt:), assumed () =
optimization overy;'s because it is simpler to do than ovely(x) _ ~(x) and solve fory(*) as follows:

L;'s. As the~; and L; have one-to-one relationship via (14), .

so once we knowy; we can findL,. Having foundL; € R, ~) = arg min (d(n)) (7 _ 7(&)) 7 (26)

we can convert it to its original domain that 8, . In Section VEP

Il-B, we shall say more about the method to migrate frofyhere the optimization problem is a linear programming (LP)
the relaxed solution to the integer solution. problem with polyhedron (defined by) as a feasible region,

In order to solve the problem (22) and to derive an algorith@hich is defined by simple bound constraints. The LP problem
for the joint quantization and power allocation, we adofe thcan be efficiently solved by numerical methods for example,
approach where we first optimize the bits for fixed power ajhe interior-point method [26]. Far(%) e [0,1] and fory(%) €
location to the sensors; then we optimize power for gives. bitp  the ~(x+1) = (%) 4 (%) (70@) _ 7(f~e)) being a convex
In this way, the problem is decoupled into two subproblemgmbination of two pointsy(*) and~(*), in P (a convex set),
and the solution of these is outlined in Section IlI-A1l angie havey(x+1) e P.

Section II-A2, which are coming next. Now optimize~;’s as follows:

1) Optimizing the quantization bits: For given P;’s, the

optimization problem (22) becomes

i=1

a) Initialize y(*) € P and sets = 0
b) Find ®®) such that(d(“))TG(“) < 0 holds by solving

minimize Dt(upb) (26), otherwise stop.
i Vi c) Find step lengthr®) such that (25) holds.
1 : . : ) .
subject to 0 <; < —, Vi (23) The iterative procedure generate~s(upch)|m(§-) s which are
o3 feasible (i.e.n(*) € P) and decreas®;"""’. It is fairly simple

Due to the spatial correlations, the objective function is @ Show that the sequenge)™) } converges to a stationary

nonlinear function of the optimization variables and a etbs POINt that is, to the first-order KKT point of the underlying

form solution to the problem is hard to find. To this end, iQPtimization problem (see Prop. 2.2.1 in [25]). .

what follows, we outline an iterative descent-type algorit ~ Note that the numerically search fors as outlined requires

which is guaranteed to converge to the Karush-Kuhn-TucIérnumbe_r of matrix inversions and_for a sensor qetwork with

(KKT) point of the underlying optimization problem. large N it may become com_putatlonally expensive. _In that
Lety = [v1,...,v~]7 be the vector of;’s andd(v(”)) _case, to reduce the complexity, we adopt the following suc-

v’ybgupb)"yz ., be the gradient Oﬁt(upb) with respect toy cessive approximation approach to optimize ths. Noting

i i v 7 7 thata; = By, we can write
evaluated at/(*), wherex is an iteration index. For simplicity,

we denoted (y(®)) by d(®). Theith component of the vector ., N N
d is given by D = 52 — > 4iBiosospsi+ F Y B U (27)
=1 1=1
aﬁ(upb) o ) , )
a, = 2 To optimize v;'s, we assume thaB;’s are given. Then we
i update the values @f;’s using the values of;’s from the pre-

~ N1 F ~ 1\t vious iteration. Using this idea of successive approxiomti
T 1 1
= C;+C ) —Ji+ =J; (CS C ) U ~(u
¢ ( &y {72.2 v2 %y the Dt( P) decouples along the sensors and we can solve for

OU; F ~ -1 %Y as
+F— M+ U (G4 C) Ji]
i i ) " vi=arg min f(3) = —%Biosospsi + F V287U
(CS + c;l) ¢, (24) SHEo2

. . . . . for which the optimality conditions are:
where J; is a diagonal matrix with unity ati,:)th place

[4,1] _ 0 i .

and all other elements equal to zero, and = = f(n) >0, if v =0, (28)
LGP J2L: o —CiPi/2L: with [; given in (14) as a function i
21og(2)7; (1—v:02) _ af () _ 1
of ;. Note thatUy; ; denotes(i,i)th element of the matrix =0, fOo<y<—, (29)
U. i i

Let P = {y]0 < v < 1/0?, i =1 N} define the 0f () i _ !

Vi S Vs 05 1 PRI SO, If7i—7. (30)

feasible region of the problem (23). The basic idea of the Vi g;



As~; = 1/0? meansl; = oo from (14), which is not possible. sum-power constraint with equality that iEjGA P; = P,
Therefore, from (28) and (29) find < v; < 1/0? by solving which gives

N | o1y, oL
OUliil |, 9s0s:Psi i (31 Pt Yjea 108 7ot
i FB;

A =exp 5T ,
. . . . ~jeaq
For givenP;’'s and ;'s, as shown in Appendix B, the function
D{"P") is convex with respect tg;’s. Therefore the optimiza- where A := {i|L; > 0 A Fa?(;/2A\L; > 1,i = 1,...,N}

27Ul + 77

(38)

tion of v;'s as given in (31) decreases the distortion. defines the set of active sensors.
2) Optimizing the transmit powers: For given L;’s, the The Prop. 3 tell us that the objective function is jointly
optimization problem (22) becomes convex over allP;’s for given quantization bits. Moreover, the
~ power constraint is linear. Thus the power allocation peobl
minimize D) for given quantization bits is convex. Therefore, the power
v N allocation solution given in (37)—(38) is optimal.
subject to Zpi <P.P>0, Vi (32) Substituting (38) in (37) and using the log—sum inequality
P [28] we can write
which we solve using the method of Lagrange multipliers. We 2L, P, a?¢; ZjeA %7
define the Lagrangiai associated with the problem (32) as Py = G 2L; +log Li S.o.02 ] (39)
? jEA G ? JEA ]

N
A\, Py Vi) :Dt(“pb) +ZP~L()\—771‘) — AP, (33) For .Pt. — oo, the logarithmic term in (39) is potentially
negligible compared to the other term and thus we can
approximateP; as

i=1

where\ andn; are Lagrange multipliers. The KKT optimality
conditions are given as follows: lim P; ~ Li i (40)
Py—oo G ZjeA Li/¢
+A—nm =0, Vi (34) which shows that at relatively higt?;, the P;'s can be
determined by the values df;/¢; for all i.
3) Summary: Now based on the development in Section
al N [lI-A1 and Section 1lI-A2, a block-coordinate descent algo
A(ZPZ' - Pt) =0, 420, ZPZ' < B (35) rithm can be proposed to iteratively optimize the quanitrat
=t bits and the transmit powers as follows.
1) Initialize the parameteré; and P;, and calculatey; and

oA _ oD
oP, 0P

i=1

’I]Z‘Pi = O, ;i 2 0, PZ Z 0, V. (36) s fori=1 N
In order to assign power to the sensors, solving the KKT!!) Detéermine power allocation?; for i = 1,...,N as
conditions in (34) and (36) gives outlined in Section Ill-A2. ,
[Il) Determine quantization bitd; for : = 1,..., N: find
2L 4 (Faig . ~;’s as outlined in Section I1I-A1 and calculafg’s from
Fi= G lo ( 2AL; )’ fori=1,....N, (37) (14). Updateq;’s from (15).

IV) Repeat steps (Il) and (Ill) until there is no appreciable
wherelog ' () = max{log(z), 0} andlog denotes the loga-

_ decrease in the objective function.
rithm to the base:. Eq. (37) shows that the powers allotteqﬁ/

to the sensors depend on the correlation values and { g call this as Algorithml. The algorithm iteratively opti-

observations quality (viay;'s), the quantization bits, and the "4€S Li's and F's. The algorithm decreases the objective

ion 7H(upb) i Ve
channel SNRs. Moreover, depending on the values of th I%Q(f[tlon ﬁtf ; Iir\]/er?g], St_?ﬁ r”: ?tetﬁl (“)i\florng“l/emrlitshr?qnd N
parameters some of the sensors with > 0 (sensors with S.EP( ) for g en s. Therefore the given aigorithm ca
L; — 0 always haveP; — 0) may get zero power that is, achieve a monotonic decrease in the objective function from

would be switched off altogether. In fact, for a sensto get one iteration to the other.
P; > 0 that is, to be active, following conditions must hold:
L; >0 and Fa2(;/2\L; > 1. B. Migration from Continuous Solution to Integer Solution

Proposition 3: The objective functiorﬁt(“pb) is a decreas- In the preceding section, we outlined solution for the
ing and jointly convex function of’’s for given quantization continuous relaxation of the MINLP problem. One way to
bits. obtain the integer solution is by roundirdg, for all 7, to the

Proof: See Appendix C. [0 nearest integer. However, this constitutes a naive approac

The preceding proposition tells us that the objective fiomct Herein, to obtain the integer solution from the continuous
is decreasing with increasing power budget. As we are mimelaxation, we propose a greedy-heuristic procedure raatli
mizing a decreasing function, the optimal solution fis is in the following, which gives distortion performance bette
always at the sum-power constraint boundary. Consequerithan the simple rounding scheme as we shall see in Section
the multiplier A should be determined so that it satisfies thi/.



[) Sort L;'s in an ascending order and construct the corrée written asN separate problems far=1,..., N as
sponding index-set denoted

L;
Il) Fori=1,...,N, do minimize 24,N6,<Wwpi/2
) Set either L. ;) = ceil (Lzg)) OF Legy = floor (Lggy) Wiy, Vios e~
depending on which gives the minimum distortion, and L
construct the index-séf asZ(i) = L(i). subject to Z”W =1, w,. >0, Vs, (42)
V) Use Algorithm 1 to reallocate powelP, to the sensors =1

k=1,...,N and bitsL, to the sensorg € £\Z, where
£\ T means all elements af which are not inZ.

V) Sort L; for j € £\ Z in an ascending order and
accordingly update the index-sét

which can be solved independently at the sensor riode
Proposition 4: The objective function of (42) is a decreas-
ing function ofw; ,, for all x and the optimization problem is
jointly convex overw; ,. for all «.
We call this procedure as Algoritha The given algorithm Proof: See Appendix D. O
successively converts the real-valued quantization bits Using the method of Lagrange multipliers and solving the
(from the solution of the relaxed problem) to the integeueal associated KKT conditions, we can prove that the optimg|
starting from the sensor with the smallest number of bitis given by
After converting the relaxed number of bits of the sensor to P
the integer domain, the algorithm recalculates the bitshef t — wi; = & lo - (29 (4j)) , J=1...,L, (43
remaining sensors and reallocates power to all sensorg usin . !
Algorithm 1. In each step of the algorithm, the underlyingvheres; is a Lagrange multiplier associated with the constraint
hypothesis, in converting the bits from the real domain ..~ wi» = 1. EQ. (43) shows that the power allocation to
the integer domain, is that the sensor which gets the srhallé¥ quantization bits is like a waterfilling on the significan
number of quantization bits by the Algorithinwill be the of the bits that is,j wherej = 1 corresponds to the MSB
sensor that is least effective in the network (among theassnsand j = L; to the LSB. From (43), we can see that; > 0
with non-integer bits) and rounding the bits of this sensor if and only if ¢;P;/2(47)s; > 1. Therefore, we can define a
least likely to affect the distortion. function f(K;) = (;P;/2(4"")s; such thatf(K;) > 1 for
k=1,....,K;and f(K;) < 1fork = K;+1,...,L;. The
multiplier ¢; can be given by

—r (44)

Ci P

K; 2(4"
C. Power Allocation Along the Quantization Bits o = exp (1 + et C% log 4(p)>

The objective functionD{"*™ of the optimization problem o _ _
(21) assumes that the total transmit pow®r of sensori By substituting (44) in (43), we can write; ; as follows:

is uniformly distributed among its quantization biis; that L4 yF 2 g 24 ;

is, P;/L; is expended to transmit each of tiie bits. This = _ 2 =1 OGP OB GPL log 2(4)
approach is not optimal as the contribution of the bits to = GiFs 21}(3 GiP;

the reconstruction distortion is proportional to the intpoce 2 (GP 2K 2(47)

of the bits—an error in the MSB gives the highest increase > ( "' 1 log = — log )
whereas an error in the LSB the smallest increase to the GPi \ 2K GPiY ol 47" Gibs
distortion. Nevertheless, the uniform power allocationroam < 2 (QPi o 6K; o 2(4J’)>

the bits has greatly simplified the optimization problem by =GP\ 2K; & P & &P )

enabling us to formulate and solve the continuous relamatio 1 2 3K;

counterpart. Once the proposed algorithm for the relaxed — E_*’ GPi log 4 (45)

problem has converged and we have converted the real—valuebd

L;’s to the integer domain, then we can allocate the resultadt'®"® the first inequality follows from the log—sum ineqteli

power P; of sensor; to its quantization bitss = 1,...,L; angithfjefoqd Lnﬁegiualéty;? (?))b':;amed fg t_r':e_ "?‘ptpmx'tr_“ ation
according to their significance. To this end, we consider ther=1 = (1- )/3 < 1/3. From (45), itis interesting

following problem: to note that

1
lim Wi~ —, i=1...,K;, (46)
minimize D{°PP) Feo K l
Wik, ViR

which coincides with the classical waterfilling strat-

) L , ) egy—provided the available power is high enough then it is
subject to Zwm =1, Vi, win 20, Virk, (41)  equally divided among the the bits.
k=1

where w; . denotes the fraction of’; used to transmit the D. Exhaustive Search Based Solution

quantization bitx € {1,...,L;}, and D{°P") is given in (17). For the quantization and power allocation design in Section
Here, the objective function and the constraints are sefmaralll-A through Section III-C, assuming that the total transm
along the sensors; therefore, the optimization problemh¢dah power of each sensor is uniformly distributed among its



guantization bits, we solved the (continuous) relaxed lerb
afterwards, we converted the continuous solution to thegiet
solution; and then based on this integer solution we atotte
power to the individual quantization bits. This approaah-si
plified the optimization problem because it enabled us taxrel &

Db)cs)

the integrality constraint on the quantization bits. Atiatively, S
noting thatP; . = w;, . P; is the power expended to transmit 5
the xth quantization bit of sensof, we can consider the 2
following optimization problem: §
minimize DEOPb) g
Li,Piy,i,Vl,I{ &
N L;
subject to » > Pin <P, Li€Zy, Pix€Ry, Vik.
i=1 k=1

For given L;’'s, using the Lagrange multiplier method, the
optimal P; ; for all < and j can be given by

2 3Fa?L;¢;
Pi; = —logt [ " 47

o= 2o (o) “n
where \ is a Lagrange multiplier associated with the sum-
power constraint. The multiplier can be given by

41
Po+3 2 ea Cz log %

2 )
- Zi,leA i

where A := {i,j|3Fa?L;(;/2\(47) > 0,j = 1,...,L;,i =
1,...,N}. Let the optimalP; ;'s be denoted byP;;’s then
the optimal L;'s can be obtained by exhaustive search as a
solution to the following:

A =exp (48)

Quantization Bits

Lf,Vi=arg _ min DY) (Ly, Pry(La)),  (49)

i€{0,...,Lmax },V1
where L.« € Z,, IS some reasonably large integer with
7., being the set of all strictly positive integers. Note that
the computational cost of such a search exponentially &sa®
with N as the search domain expands(&s- Ly,ax)" — 1.

IV. NUMERICAL AND SIMULATION EXAMPLES

Through numerical and simulation examples, this section
substantiates the analytical findings and illustrates flece ¢
tiveness of the quantization and power allocation scheroe. §
this purpose, we consider an elementary sensor network wigh
N = 3, unless stated otherwise. Note that for the sake of illus
tration we have selected a small network size. Nevertheless
the simulation of a network of any size can similarly be done,
as we shall see later in this section. We assume without any
loss of generality that, = 1, 02 = 02 =1, 02 = 0.01,
gi=1, andaii =1 for all 7. For the sake of illustration, we
take the following examplédy,,dx,,dx,) = (=0.1, 0, 1.5)
and (dy,,dy,,dy,) = (0, 5, 0), where (dx,,dy,) gives the
position of sensoi in the XY-plane. Note that we can view
this example as a realization of random deployment of the

sensors. We have taken this example for purely illustratidd- 2: Comparison of the quantization and power allocation
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purpose which in no-way limits the generality of the result§chemes AJQPA and UPAQ .

We assume that the source lies at the origin of fh# -
plane. Assuming; = 1, the corresponding spatial correlation

values are(ps 1, ps.2,ps,3) = (0.9048,0.0067,0.2231) and the given spatial correlation values and the observatiaseno

30 35 40

(p1,2,p1.3,p2,3) = (0.0067,0.2019,0.0054). Note that for variances, the lower bound MSE i3, = 0.1875. The total
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N

estimation distortion cannot be below this value no matter ¥ (—8— plwbies
how finely we quantize the sensor observations and how large 0.9 Do
the transmit power may become. Unless stated otherwise, all git —— DE(”:) i
numerical and simulation examples in this work are based_ . Z oo b

on this system setup. In the figurgss(.) = log;,(.). In the
sequel the quantization and power allocation design pteden
in Section 1lI-A through Section 1lI-C is referred as AJQPA- .
la and the exhaustive search based design in Section IlI-D a
AJQPA-Ib.

First we compare the AJQPA-la design (under Algorithm 0.2
with a uniform power-allocation based quantization (UPAQ)
scheme. The UPAQ scheme distributes power uniformly
among the sensors that i8; = P, = P;/N for all i. The
guantization bitd.;’s for the UPAQ are calculated in the same o1 ‘ ‘ ‘ ‘ ‘ ‘ ‘
way as in the AJQPA-la design. The results are plotted in Fig. 0 > 10 15 20 » 30 i 1
2, which shows that the AJQPA design outperforms the so- 101og(F)
called UPAQ scheme in terms of the reconstruction MSE. This
superior performance comes from the fact that, contrarpé¢o t
UPAQ, the AJQPA design quantizes finely and allocates more
power to the sensor(s) having favorable correlation values
while some sensors with less favorable correlation values a
turned on at higher total poweP;, or completely switched
off. Note that with increasingP;, the achieved distortion
approaches the lower bounB, = 0.1875. Moreover, at
high P, the AJQPA design allocates power uniformly amongg
the sensors, and the quantization bits also becomes eq@al

Reconstuction Distortio

zation Bits

across the sensors which saturates at some finite value—the!0 ™" [ iy L | @

AJQPA design converges to the UPAQ scheme. The exam- i 3 L |

ples in the sequel only consider the AJQPA design without ‘ === L] 9

including comparison with the UPAQ scheme. Nevertheless, Rl %

the AJQPA design always performs better than the so-called 10 [ o A7 7 7 01

UPAQ scheme. 0 5 10 15 20 25 30 35 40
10log(F;)

Fig. 3 compares the reconstruction distortions, and the
associated quantization bits and power allocations obtiin 40
from Algorithm 1 for the solution of continuous relaxation,
denoted as continuous solution (CS), and the integer saluti  ,, |
(IS) obtained from the CS by Algorithr@ proposed under
the AJQPA-la scheme. The figure also plots the quantization
bits, the transmit power of the sensors, and the associatgd
distortion under the scheme AJQPA-Ib. In the figure, th%
quantities concerning the AJQPA-Ib are denoted by the extef 10 |
sion “-ES"—signifying the exhaustive search based solutior%
From the figure, we can observe that, under the AJQPA-

3

) b

la, the CS obtained from Algorithm and the IS obtained ! |0

from Algorithm 2 give distortions D{"?”)¢ and D{"P")ss, Py

respectively, which monotonically decrease wih. Simi- -or - Z @

larly the distortionDEOPb)‘S'ES obtained from the AJQPA- _ Pj &

Ib shows a monotonic decrease wifi. Moreover, note -20 : ‘ ‘ : . S : 4

that bgopb)IS-ES < Dt(opb)IS < Dt(upb)ls' where Déupb)ls 0 5 10 15 10120(}3) 25 30 35 40
og(

denotes the distortion when power allotted to each sensor
is distributed uniformly among its quantization bits whese ) o )
Dt(opb)ls denotes the distortion when power of each sensorfg. 3: Comparison of the quantization and power allocation
allotted to its bits according to their significance. To taied, Scheémes AJQPA-la and AJQPA-Ib.

Fig. 4 plots the fraction of the power of each sensor allotted

transmit its individual quantization bits. We can observatt

the MSB is given the largest share and the LSB the smallestrrom Fig. 3, we observe that the distortioﬁﬁ‘mb)IS
share in the transmit power of the respective sensor. achieved by the AJQPA-la design and the distortion
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Fig. 4: Distribution of each sensor power?; to
its bits under the AJQPA-la scheme. (Top) A
10log(P;) = 25, sensors get powet0log(Py, Pz, P3) =
(23.7914, Off, 18.8545) and bits (L1, Lo, L) = (8, 0, 4).
(Bottom) At 10log(P;) = 40, sensors get power
10log( Py, Py, P3) = (35.5437, 34.8415, 35.2725) and
bits (L1, Lo, L3) = (18, 18, 18).
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Fig. 6: Distortion performance comparison of the quanitrat
and power allocation schemes AJQPA-la and AJQPA-II for
N =3.

examples in the sequel focus on the design AJQPA-la, unless
%tated otherwise.

Examples in Fig. 5 compare the theoretical reconstruction
distortion with that obtained from the actual system simula
tion. We can observe that the distortion tefdy, is negligibly
small andD, ~ D+ D... Moreover, the distortiorif)t(opb ®isa
quite tight upper bound fab+ D, for all P, values where any
of the sensors quantizes with more than one bit (c.f., Fig. 3)
These observations reveal that the pseudo-quantizatite no
model combined with upper bounding the distortiby with
Dt(‘)pb)ls give quite good results.

Next, in Fig. 6 we compare the performance of the quan-
tization and power allocation scheme AJQPA-la with that of
the scheme in [20] which is referred here as AJQPA-II. In the
figure, Dy is the total distortion achieved by the AJQPA-la
scheme;D,.R is the distortion achieved by a scheme where the
CS for the quantization bits from the AJQPA-la is convertd t
the integer domain by simple rounding and then we reallocate
transmit power to the rounded bits as is done in AJQPA-Ia;
Doug-1 » Doug-i1, and Deyq - denote the distortions achieved
by the AJQPA-II scheme. Th®,,. is obtained by solving
the optimization problem in [20] with théLi}i]\Ll obtained
from the AJQPA-la (c.f., Fig. 3)Douq-i is Obtained by solving
the problem of [20] by exhaustive search o»{e[ri}f;l, and
Douq-ni is obtained by evaluating the objective function of the
problem in [20] for both{Li}é\Ll and {Pi}f;l provided by
the AJQPA-la. TheD, denotes the lower bound distortion. We
can observe thaDy < Douq-i < Douq-t < Dy < Dir. The
difference betweerD; and D r highlights the effectiveness

DEOpb)IS‘ES achieved by the AJQPA-Ib design are quite closef the Algorithm 2 under the AJQPA-la scheme for obtaining

to each other. This is because the quantization bits and

the IS from the CS visrvis the simple rounding scheme.

power allotted to the sensors by the two designs match qui®reover, we can see th@, and D,q.1 are quite close to
well. This observation shows that, compared to the exhaustboth D,,q. and D,q.1 for a wide range ofP; values. This
search based design (i.e., AJQPA-Ib), the design proposkuatstrates the effectiveness of the AJQPA-la scheme when
under the AJQPA-la scheme works quite well. The simulatiamompared with the computational complexity of the AJQPA-II
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Fig. 9: Distortion performance comparison of the quanidrat

Fig. 7: N = 30 sensors deployment layout. .
and power allocation schemes AJQPA-la and AJQPA-II for

N = 30.
. . —8— Dy —&- Dy D
ThNg e ERRERES —— ) %_B._D §
- : —— D, E - - De E . . ..
—o— D, 5 —6 - D, 5 we observe thab; ~ D+ D, with D,, being negligibly small.

08 g SRR S\ D+ D, D+D. Finally, Fig. 9 gives distortion comparison for the AJQPA-

N : —O— pe =& - pete la and AJQPA-II schemes, where similar observations can
be made like the three-sensor case in Fig. 6. Note that the

Doyq-n is not included in Fig. 9 because it is intractable to

: : : : obtain for N = 30. To obtain Dy,q-1, We need to solve

8 D SR the c[{Ptimization problem of [20] by exhaustive search for

: : : {L;},_, over {0,...,Lyax}. For example, forL,.x = 9

we need to solve the problem fan3° times, which is not

a computationally manageable task within a reasonable time

frame.

Case-1 Case-2

Reconstruction Distortion

0 5 10 15 20 25 30 35 40 V. CONCLUSION

In this contribution, we have pursued a design to jointly
) ) ] ) guantize the sensor observations, which are correlatetbscr
Fig. 8: Distortion performance comparison f&¥ = 300 ggnsors, and allocate power to transmit the observations to
theoretical versus simulated. the FC with the goal to reconstruct the source with minimum

distortion. Based on the assumption of pseudo-quantizatio
noise model and the quasi-optimal LMMSE estimate, we

scheme, especially in the case 0f,q-ii- showed that the quantization and power allocation problem

The simulation examples thus far are based on a netwaén be solved efficiently. Based on the solution, we proposed
that consists of three sensors for which the correlationesl a block-coordinate descent type algorithm which iterdyive
are fixed. Next, we consider a sensor network comprisingythioptimizes the quantization and power allocation. Moreover
sensors that iV = 30, which are deployed in a fifty-by- we showed that in addition to the power allocation across the
fifty grid as shown in Fig. 7. We assume that the underlyingensors, there is a room to optimize power allotted to trénsm
source is located at the center of this grid. Similar to thiegh individual quantization bits of each sensor. We illustdate
sensor case, we assutfie= 1, 02 = 02, = 1, 05 = 0.01, the effectiveness of the proposed designs with a few simple
gi = 1, and aﬁ,i = 1 for all i. For this network setup, examples. We have seen that sensors having high correlation
we consider two cases having different correlation stmectu and low cross-correlation values and better observatiatitgu
Case-1 with ; = 10 and Case-2 with 6; = 10, where#; compared to other sensors quantize their observation wigh fi
controls how fast the correlation decays with the distancesolution and transmit at higher power. It was also shown
(c.f., (2)). For these cases, Fig. 8 compares the theoketicth that the proposed design outperforms a quantization scheme
simulated distortions. We can see that the distortionsh bdiased on the uniform power allocation. Finally, from the
theoretical and simulated, decay with increasing corigdat simulation examples it appears that the theoretical distor
that is, increasing value @f. Similar to the three-sensor caseapproximates the simulated value quite well when any of
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the sensors quantizes with more than one bit. The futusere the last inequality follows from, , < e=Siwinfi/2,
work will consider the effect of imperfect knowledge of theNow, assuming that the total transmit powgr of sensori
correlation, the observation noise, and the communicatiandivided equally among the quantization bits’s that is,
channel. In this work, we considered the system where k&, = 1/L;, we gete; ., = ¢; = Q(\/QPi/Li) for all «.
decodes the received signal before combining them to folow, from (53) we can write as follows:

the final estimate. However, the future work may consider L,

estimation based on the soft received signals from the sensop {(m; - miﬂ < AW?Lz; Z 9—2k

APPENDIXA et
CHANNEL BIT ERRORSCONTRIBUTION TO DISTORTION = 4W2Lifiﬂ
The mean-squared error éf with respect tos is denoted AT 4?{4/2
by D. which can be written as follows: < 3 Lie; < Lie=GFi/2Li — (5B)
N 2
D.=E [(g’ B éﬂ _E (Z a; (m, — m¢)> Substituting (55) in (50) and assumidg= 4NW?2/3 we get
i=1 N
N De < F Y afLie P2l (56)
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using the Cauchy—Schwarz inequality, wheng is the quan- APPENE(’L{;(b?
tized message received through the actual channelhanid CONVEXITY OF Dy OVER";'S

the quantized message received error free at the FC via idealyith respect toy,’s, the second-order partial derivatives of
/ H ~
channel. The messages; andm, have L; bits each and can Dt(“pb) given in (27) can be written as follows: For alk 7,

be written as follows: we haveazbéupb) /9v;0v; = 0; moreover, for alli, we have
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where b; ., b; . € {0,1} for all i and ». The sensori pecause each of the term in the summation is positive. Thus
transmits the quantization bit x = 1,..., L;, to the FC Using {ho Hessian otDt(uPb) with respect toy;’s is diagonal and
BPSK modulation and powe; . P;. The assoc;ate2d bit-error g 4¢h diagonal element is positive meaning that the Hessian i
probability ise; . = Q(\/Ciwi,«P;) where¢; = g7 /o7, . With positive semidefinite, which proves that the function isveon
this, we have over v,’s for given P;’s and j3;’s.
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L,; ~
< A2L, Z 92Li—2r [(b‘ — b, K)Q} . (52) The first-order derivative of the functidﬁgupb) with respect
= ’ to P, is 9D{"™" /oP, = —F~2B2¢Uy. /2L, which is
. . ~(upb) -
where (b, . — b; )% is a Bernoulli distributed random vari- 2lways negative for any”. This tells us thatD;"™ is a

able—one with probabilitye; . and zero with probability decreasing function of;. .
(1—¢ix), andE[(b; . _bi’,{)ﬂ = ¢, . Therefore (52) can be The second-order derivatives ﬂ‘é“p ) with respect taP;'s

written as are given as foIIowsz?Q[)E“pb)/@Pj&B; =0 forall i # j
L andd2D{"*? jop? = FB242¢2Uy; /ALY > 0 for all 4. Thus
E|(mj—mi)’| < ATL; Yy 2°Hi2e, g Epb) ’ .o o
m; —mi) | = ALy i,k the Hessian ofD; with respect toP;’s is diagonal and
522 is positive semidefinite. The positive semidefinitenesshef t
Hessian means that the function is jointly convex o¥&s
_ 27 . —2K 1 i N N g
= AW*L; Z 27k G3) for given quantization bits.
r=1
Substituting (53) in (50) we get
APPENDIXD
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De SANW?D N " alLid ", '
i=1 k=1 As the constraints of the given optimization problem are lin
N L; ear, therefore for the problem to be convex it suffices to show

< ANW? Z Z a?L 4 Fe~GwinPi/2 - (54)  that the objective function is convex over the optimizatian-
i=1 k=1 ablesw; ,, for all . To this purpose, lef (w; 1,...,w;i ;) =



4=re~CwinPi/2 Forg,. € {1,...,L;}, we can show [16]
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that
and .
a?j?f = (471 PRS2 > 0, ik, 9]

which tells us that the Hessian ¢fw; 1, . ..,w; 1,) is positive
semidefinite and thus proving that the given function istjgin 20
convex overw; ,.'s. Furthermore, note that
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which is always negative for any valid,;, and thus [22]
fwii,...,w; ;) is a decreasing function over; ,.. 23]
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