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Abstract—This work deals with distributed estimation problem in
hierarchical wireless sensor networks, where the network is divided
into spatially disjoint groups called clusters. The sensors in each cluster
observe a separate random source which is correlated with the sources

being observed by the other clusters. Each cluster has its designated
cluster head (CH). The sensors in the clusters forward their observations
to the CHs, which in turn communicate with a fusion center (FC).
The estimation at the CHs and the FC is done based on the minimum

mean square error estimation rule. To minimize the overall estimation
distortion, we propose a power scheduling scheme that allocates power to
the individual sensors and the CHs subject to constraints on the transmit
power of individual clusters and the overall network. The correlation

among the underlying sources leads to coupling of the optimization
variables and the power allocation solution requires centralized compu-
tation, which may be computationally expensive. To this end, we propose
an alternative formulation based on an upper-bound on the distortion

function, which leads to a solution that exhibits favorable characteristics
for distributed implementation. Simulation examples corroborate the
effectiveness of the proposed power scheduling scheme.

Index Terms—Hierarchical wireless sensor networks, parameter esti-
mation, power scheduling, resource management, spatial correlation.

I. INTRODUCTION

In recent years for wireless sensor networks (WSNs) several power-

aware and energy-efficient estimation algorithms have been proposed

under a wide variety of network models. The work of [1] considers

estimation based on quantized sensor observations. In [2], the focus

is on designing a power allocation scheme where sensors amplify and

transmit their analog observations. The estimation schemes in these

works target to estimate an unknown deterministic parameter. The

works of [3] and [4] studied power allocation in WSNs with spatially

correlated data. In all these aforementioned works, individual sensors

send their observations to a central unit, called fusion center (FC),

which forms estimate of the underlying source. In the realm of

energy-efficient estimation, this centralized WSN topology, where all

sensors directly transmit their observations to a central station, may

not be an optimum choice. To this end, [5] investigated the minimal

energy progressive estimation in sensor networks and [6] studied

estimation under different network topological settings. The authors

in [7] and [8] proposed power allocation schemes for estimation

in cluster based WSNs. All these works propose power allocation

schemes for estimation of a homogeneous unknown deterministic

parameter and do not consider the effect of data correlation.

While the existing energy-aware or power-constrained estimation

algorithms for WSNs ignore the effect of data correlation, in this

paper we consider a system where the network is divided into clusters,

where each cluster observes a separate source albeit correlated with

the sources being observed by the other clusters. The estimation of

underlying sources is performed in two time slots: In the first, the

sensors in each cluster amplify and forward their noisy measurements

to their respective CH that forms a preliminary estimate of the
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underlying source; and in the second, the CHs send a scaled version

of their partial estimates to a FC that forms the final estimate of the

sources. To this purpose, the CHs and the FC employ minimum mean

square error (MMSE) estimation rule.

In [9], we proposed a power scheduling scheme in the cluster-

based WSNs where we target to minimize the estimation distortion.

However, under the proposed scheme, power allocations need to be

computed numerically in a centralized fashion. For large networks,

the computational cost and the implementation overhead associated

with this centralized scheme may become prohibitive. To this end, in

this paper, first we develop an upper-bound on the distortion function

and subsequently we use that bound as a surrogate for the distortion

function in the optimization problem for power allocation. The result-

ing power scheduling scheme has favorable structure for distributed

implementation and gives distortion performance that matches quite

well with the scheme in [9], which is based on the exact distortion

function. Moreover, compared to a uniform power allocation scheme,

the proposed design gives better distortion performance.

The remainder of the paper is organized as follows: Section

II presents the system model, Section III formulates the power

allocation problem and outlines its solution, Section IV presents some

simulation examples, and finally Section V gives concluding remarks.

II. SYSTEM MODEL AND PRELIMINARIES

Consider the cluster-based hierarchical sensor network shown in

Fig. 1 in which N ′
0 spatially distributed sensor nodes are divided

into Nc disjoint and non-overlapping clusters, indexed by J =
{1, . . . , Nc}, such that N ′

0 =
P

j∈J Nj , Nj being the number of

sensors in cluster j indexed by Ĩj = {1, . . . , Nj}. The clusters

observe zero-mean random Gaussian sources sj ∼ N (0, σ2
sj

) for

j ∈ J which are correlated such that Cov{sj , sk} = ρsj ,sk
σsj

σsk
,

where ρsj ,sk
specifies the correlation between sj and sk for all j

and k in J . The noisy observation at sensor i in cluster j is given

by

xi,j = sj + ni,j , ∀i ∈ Ĩj , ∀j ∈ J , (1)

where ni,j ∼ N (0, σ2
ni,j

) denotes the observation noise, which is

independent of sj’s and the observation noise across sensors.

As an example application of the sensor network, we can view

that the network is deployed to observe a Gaussian spatial random

field. We assume that inter-sensor distances within each cluster are

small compared to the inter-cluster distances. The sensors in each

cluster being close to each other have strong internal correlation and

therefore we can model the field within each cluster as homogeneous.

Whereas long inter-cluster distances suggest heterogeneous field

values in different clusters.

The estimation of the sources is done in two phases. In the first

phase, the sensors in each cluster amplify their observations and then

transmit to their respective CH over orthogonal channels such that

the received observations are

yi,j =
p

φi,j c̃i,j(sj + ni,j) + wi,j , ∀i ∈ Ij , ∀j ∈ J , (2)

where Ij = Ĩj − {Nj}. In (2) φi,j ∈ [0,∞) is a scaling or an

amplifying factor, c̃i,j is channel gain between the sensor and the
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Fig. 1. A cluster-based hierarchical wireless sensor network.

CH, and wi,j ∼ N (0, σ2
wi,j

) is receiver noise which is assumed to

be independent of sj and ni,j for all i and j. Moreover, the receiver

noise is assumed to be independent (of the receiver noises) across

sensors in all clusters. Note that without any loss of generality we

have assumed that the sensor Nj is designated as CH of cluster j.
The designated CH for each cluster can be a fixed sensor or it can

be dynamically selected from among the sensors in that cluster; for

example, it could be a sensor with maximum remaining energy or

better channel gain to the FC.

Employing the MMSE estimation rule [10], the CH j forms an

estimate ŝj of the source sj based on the received observations from

the sensors in the cluster. We can write the estimate ŝj as

ŝj = Dj

„

xNj

σ2
nNj

+
X

i∈Ij

p

φi,j c̃i,jyi,j

φi,j c̃i,jσ2
ni,j

+ σ2
wi,j

«

, (3)

where Dj is estimation MSE that can be given by

Dj =

„

1

σ2
sj

+
1

σ2
Nj

+
X

i∈Ij

φi,jci,j
φi,jci,jσ2

i,j + 1

«−1

, (4)

where σ2
i,j = σ2

ni,j
for i ∈ Ij and σ2

Nj
= σ2

nNj
,j for j ∈ J .

Moreover ci,j = c̃i,j/σ
2
wi,j

for all i and j.

By defining σ̃2
j as

σ̃2
j =

„

1

σ2
Nj

+
X

i∈Ij

φi,jci,j
φi,jci,jσ2

i,j + 1

«−1

(5)

we can write vj = Dj σ̃
2
j ŝj , a scaled version of ŝj , as follows:

vj = sj + ϑj , ∀j ∈ J , (6)

where

ϑj = σ̃2
j

„

nNj ,j

σ2
Nj

+
X

i∈Ij

φi,j c̃i,jni,j +
p

φi,j c̃i,jwi,j

φi,j c̃i,jσ2
ni,j

+ σ2
wi,j

«

. (7)

We can show that ϑj ∼ N (0, σ̃2
j ), which is independent of sj and

ϑk for all j 6= k. We can view vj as an equivalent observation at the

CH with ϑj representing the equivalent observation noise.

In the second phase of an estimation cycle, the CHs amplify and

transmit the observations (6) to the FC over orthogonal channels such

that the received observations are

zj =
p

ψj g̃j(sj + ϑj) + wj , ∀j ∈ J , (8)

where ψj ∈ [0,∞) is an amplifying factor, g̃j is gain of the channel

between CH j and the FC, and wj ∼ N (0, σ2
wj

) is receiver noise at

the FC which is independent of sj , ϑj , and wk for all j and k with

k 6= j. Using matrix–vector notation, (8) can be written in a compact

form as follows:

z = H̃s + r, (9)

where

z = [z1, . . . , zNc ]
T , s = [s1, . . . , sNc ]

T ,

H̃ = diag
`
p

ψ1g̃1, . . . ,
p

ψNc g̃Nc

´

,

r =
ˆ
p

ψ1g̃1ϑ1 + w1, . . . ,
p

ψNc g̃NcϑNc + wNc

˜T
.

Now based on (9) and employing MMSE estimation rule, the FC

forms an estimate of the underlying source vector s that can be given

by

ŝ = RsH̃
T `

H̃RsH̃
T + R̃

´−1
z, (10)

where Rs := E
ˆ

ssT
˜

and R̃ := E
ˆ

rrT
˜

. By defining ǫ := s− ŝ as

the estimation error vector, we can write the covariance of the error

vector, denoted by R̃ǫ, as follows [9]:

R̃ǫ = Rs − RsH̃
T `

H̃RsH̃
T + R̃

´−1
H̃R

T
s

=
`

H̃R̃
−1

H̃
T + R

−1
s

´−1
. (11)

III. ITERATIVE POWER SCHEDULING SCHEME

We base our power scheduling scheme on the following optimiza-

tion problem:

minimize
ψj≥0, φi,j≥0, ∀i,j

tr
`

R̃ǫ

´

subject to
X

j∈J

“

ψj
`

σ2
sj

+ σ̃2
j

´

+
X

i∈Ij

φi,j
`

σ2
sj

+ σ2
i,j

´

”

≤ Pt,

X

j∈J

ψj
`

σ2
sj

+ σ̃2
j

´

≤ ψmax,

X

i∈Ij

φi,j
`

σ2
sj

+ σ2
i,j

´

≤ φ[j]
max, ∀j ∈ J . (12)

Where the first constraint limits the total network transmit power,

which makes sense from the view point of global energy efficiency

and to realize green ICT [11]. Moreover, this constraint enables a

fair comparison between networks of different sizes. The second and

third constraints limit inter-cluster interference and interference with

any neighboring network, which is important from the perspective of

spatial reuse of spectrum resources. Depending on the application of

the WSN, some clusters may be located in critical areas and it may

be required to keep those clusters alive for sufficiently long time; this

observation gives another motivation for putting cap on total transmit

power of individual clusters.

Note that the optimization variables ψj and φi,j are coupled in the

constraints. This coupling of the variables, and the reason that the

optimization problem (12) is jointly non-convex over the optimization

variables make the problem difficult to solve. To this end, in Prop.

1 (due to space constraints, the proof of which is given in [12]) we

reformulate the problem in an equivalent form that bears favorable

characteristics as shall be seen in the ensuing development.

Proposition 1: Let α ∈ [0, 1) such that αPt power is expended in

all clusters on forwarding observations from the sensors to the CHs

and (1 − α)Pt power is expended on forwarding observations from

the CHs to the FC. Moreover, assuming ξj ≥ 0, γj ≥ 0, and βi,j ≥ 0
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such that
P

j∈J ξj ≤ 1,
P

j∈J γj ≤ 1, and
P

i∈Ij
βi,j ≤ 1, we

can write for all i ∈ Ij and j ∈ J as follows:

ψj =
(1 − α)Ptξj
σ2
sj

+ σ̃2
j

, φi,j =
αPtγjβi,j
σ2
sj

+ σ2
i,j

. (13)

With this we can write the problem (12) in the following equivalent

form:

minimize
α, ξj≥0, γj≥0, βi,j≥0, ∀i,j

tr (Rǫ)

subject to α ∈ T ,
X

j∈J

ξj ≤ 1,
X

j∈J

γj ≤ 1,

X

i∈Ij

βi,j ≤ 1, γj ≤ γ[j]
max, ∀j ∈ J . (14)

Where T = [α0, 1), α0 = max{0, 1 − ψmax/Pt}, γ
[j]
max =

min{1, φ[j]
max/Pt}, and Rǫ is given as

Rǫ = Rs − RsH
T
“

HRsH
T + R

”−1

HR
T
s

=
“

HR
−1

H
T + R

−1
s

”−1

, (15)

with

H = diag
`
p

(1 − α)Ptξ1g1, . . . ,
p

(1 − α)PtξNcgNc

´

,

R = diag
`

(1 − α)Ptξ1g1σ
2
1 + σ2

1 + σ2
s1 , . . . ,

(1 − α)PtξNcgNcσ
2
Nc

+ σ2
Nc

+ σ2
sNc

´

. (16)

In (16), for all j, gj = g̃j/σ
2
wj

and

σ2
j =

„

1

σ2
Nj

+
X

i∈Ij

αPtγjβi,jci,j
αPtγjβi,jci,jσ2

i,j + σ2
i,j + σ2

sj

«−1

. (17)

Proof: For proof see [12].

The equivalent formulation in (14) has linear constraints and the

constraints are independent in the sense that each constraint function

depends on a separate set of optimization variables (i.e., α, ξj’s, γj’s,
or βi,j’s). This independence of the constraints is a nice property

that allows us to solve the problem using the block-coordinate

descent method (BCoDM) [13]: Whereby we divide the problem

into subproblems and in each subproblem we can optimize over a

separate set of optimization variables. This approach is used in [9]

where the solution of each subproblem relies on centralized numerical

methods, because the optimization variables are nonlinearly coupled

in the objective function due to the correlation of the underlying

sources. The centralized numerical solution may be computationally

expensive and may incur high overhead in implementation. To this

end, in the ensuing development, to solve the problem (14), first we

develop an upper-bound for the objective function and subsequently

we use this upper-bound as a surrogate for the objective function and

solve the optimization problem. The resulting solution is amenable

for distributed implementation as we shall see in the ensuing devel-

opment.

Proposition 2: The trace of Rǫ can be upper bounded as

tr (Rǫ) ≤
“

X

j∈J

σ2
sj

”

− Υ, (18)

where

Υ =

“

P

j∈J ξjgjΨj

”2

P

j∈J ξjgj

„

P

k∈J ξkgkQ̃[j,k] + ξjgjΨjσ2
j +

Ψj

`

σ2
j
+σ2

sj

´

(1−α)Pt

«

,

Ψj =
X

k∈J

R
2
s[j,k] =

X

k∈J

Cov {sj , sk}
2 , Q̃ = Rs ◦ (RT

s
Rs)

with Rs ◦ (RT
s
Rs) denoting the Hadamard or Schur product of

matrices Rs and (RT
s
Rs).

Proof: The proof is given in [12].

Now we consider the optimization problem (14) where, instead of

the actual distortion function, we target to minimize the upper-bound

on the distortion. For this purpose, it is sufficient to consider the

following optimization problem:

minimize
α, ξj≥0, γj≥0, βi,j≥0, ∀i,j

− Υ

subject to α ∈ T ,
X

j∈J

ξj ≤ 1,
X

j∈J

γj ≤ 1,

X

i∈Ij

βi,j ≤ 1, γj ≤ γ[j]
max, ∀j ∈ J . (19)

The power allocation problem (19) can be solved using the BCoDM,

which cyclically/iteratively minimizes the cost function with respect

to each set of optimization variables subject to the associated

constraints while the other optimization variables are held fixed.

Specifically to solve the problem do the following.

Initialize α, ξj’s, γj’s, and βi,j’s in their respective feasible region,
and repeat step 1 to step 4 until there is no appreciable decrease

in the objective function.

1: For given ξj’s, γj’s, and βi,j’s, find α by solving

minimize
α∈T

− Υ. (20)

2: For given α, γj’s, and βi,j’s, find ξj’s by solving

minimize
ξj≥0, ∀j

− Υ subject to
X

j∈J

ξj ≤ 1. (21)

3: For given α, ξj’s, and βi,j’s, find γj’s by solving

minimize
γj≥0,∀j

− Υ subject to
X

j∈J

γj ≤ 1, γj ≤ γ[j]
max, ∀j. (22)

4: For given α, ξj’s, and γj’s, find βi,j’s for each j ∈ J by solving

minimize
βi,j≥0, ∀i

− Υ subject to
X

i∈Ij

βi,j ≤ 1. (23)

Where the solution of problem (20) to problem (23) is outlined in

Section III-A to Section III-D, respectively.

A. Optimization of α

Let fj(α) = ξjgjΨj

“

ξjgjσ
2
j +

(σ2
j +σ2

sj
)

(1−α)Pt

”

such that f(α) =
P

j∈J fj(α). Now to solve the optimization problem (20) for α,
it is sufficient to consider the following problem:

minimize
α∈T

f(α), (24)

where an explicit solution for α is intractable. However, to find α,
we may resort to numerical methods such as line search methods

for one-dimensional minimization (e.g., the Golden Section method

[13]). Note that f(α) =
P

j∈J fj(α), where fj(α) depends on the

parameters concerning the cluster j, has separable structure along the

clusters. From the implementation perspective, the FC broadcasts an

initial value of α ∈ T to all CHs. Then each CH computes fj(α)
and/or ∂fj(α)/∂α (as required by the numerical method) and sends

to the FC. The FC then updates the value of α and broadcasts it to

the CHs. This procedure is repeated until a stopping criterion for the

numerical method is satisfied.
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B. Optimization of ξj’s

For optimization of ξj’s, we proceed as follows. By defining

ξ = [ξ1, . . . , ξNc ]
T ,

Q̆ = diag
`

g2
1Ψ1σ

2
1 , . . . , g

2
Nc

ΨNcσ
2
Nc

´

,

q =

"

g1Ψ1(σ
2
1 + σ2

s1)

(1 − α)Pt
, . . . ,

gNcΨNc(σ
2
Nc

+ σ2
sNc

)

(1 − α)Pt

#T

,

u = [g1Ψ1, . . . , gNcΨNc ]
T , g = [g1, . . . , gNc ]

T ,

U = uu
T , G = gg

T ,

Q = Rs ◦ (RT
s
Rs) ◦ G + Q̆,

we can write Υ as follows:

Υ =
ξTUξ

ξTQξ + qT ξ
. (25)

Now by defining 1 := [1, . . . , 1]T , the optimization problem (21)

can be written as

maximize
ξ≥0

Υ subject to 1
T ξ = 1, (26)

where we have replaced the inequality constraint with equality to

exclude the case where the denominator of Υ is zero over the feasible

region.

Let F =
˘

ξ ∈ R
Nc |ξ ≥ 0, 1T ξ = 1

¯

denote the feasible region

of the problem (26). Note that F is a compact convex set in R
Nc

(the set of Nc-dimensional real numbers). It is easy to show that

U and Q are positive semidefinite matrices, which means that

the numerator and denominator of Υ are convex functions of ξ.
Thus, the problem (26) is a convex–convex type quadratic fractional

programming problem. To solve (26), in what follows, we develop

an algorithm based on the parametric programming approach, which

is a powerful scheme for solving fractional programs.

For θ ≥ 0, let

f(ξ; θ) = ξTUξ − θ
“

ξTQξ + q
T ξ
”

(27)

be a parametrized function associated with the problem (26). We have

the following proposition, which is based on the well-known result

by Dinkelbach [15].

Proposition 3: For given θ, define

ϕ(θ) = maximize
ξ∈F

f(ξ; θ) (28)

with the corresponding optimal ξ vector as

ξ(θ) = arg max
ξ∈F

f(ξ; θ). (29)

If there exists some θ∗ ≥ 0 such that ϕ(θ∗) = 0 then ξ∗ = ξ(θ∗)
is an optimal solution of the problem (26) and the corresponding

optimal value is θ∗ = Υ(ξ∗).

Proof: For a detailed proof see [12].

Based on Prop. 3, the optimization problem (26) can be solved

using the following iterative procedure.

i: Set ι = 0 and initialize ξ(ι) ∈ F .

ii: Compute θ(ι+1) = Υ
`

ξ(ι)
´

.

iii: Solve the following optimization problem to obtain the global

optimal solution for ξ(ι+1):

maximize
ξ∈F

f(ξ; θ(ι+1)). (30)

iv: If |f(ξ(ι+1); θ(ι+1))| ≤ δ for some δ > 0 then terminate; else

set ι = ι+ 1 and go to step ii.

The preceding algorithm is guaranteed to converge to the optimal

solution of the problem (26) provided that the problem (30) can be

solved [15]. To this end, note that although the feasible region F
is a convex set, the function f(ξ; θ(ι)) is not concave. Therefore

the problem (30) is a non-concave maximization problem wherein

many different local maxima may exist, which are different from the

globally optimal solution. To this end, by introducing a slack variable

τ = ξTUξ we can reformulate the problem (30) in the following

equivalent form:

minimize
τmin≤τ≤τmax; ξ≥0

θ(ι)
“

ξTQξ + q
T ξ + ǫ

”

− τ

subject to 1
T ξ = 1, ξTUξ − τ ≤ 0, (31)

which is a convex quadratically constrained quadratic programming

(QCQP) problem that can be efficiently solved by numerical methods,

for example, the interior point method [14]. In (31), the τmin and τmax

are given as follows:

τmin = minimize
ξ∈F

ξTUξ = minimize
ξ∈F

`

u
T ξ
´2
, (32)

τmax = maximize
ξ∈F

ξTUξ = maximize
ξ∈F

`

u
T ξ
´2
, (33)

where we can show that τmin = (min{uj , . . . , uNc})
2 and τmax =

(max{uj , . . . , uNc})
2.

C. Optimization of γj’s

For optimization over γj’s we have problem (22) to solve wherein

it is sufficient to consider the following problem:

minimize
γj≥0, ∀j

X

j∈J

σ2
j ξjgjΨj

`

1 + (1 − α)Ptξjgj
´

subject to
X

j∈J

γj ≤ 1, γj ≤ γ[j]
max, ∀j ∈ J . (34)

We can prove that the objective function is decreasing with respect

to γj’s and the problem is jointly convex over γj’s. Note that the

objective function and the constraints are separable along clusters,

consequently the Lagrange dual-decomposition method can be used

to solve the problem [13].

In the optimization problem (34), as we are minimizing a decreas-

ing function, therefore the optimum is always at the boundary of

the constraints set. In the optimization, one of the following three

scenarios may arise. First, if
P

j∈J γ
[j]
max < 1 then the sum-constraint

(i.e.,
P

j∈J γj ≤ 1) is inactive and all individual-constraints (i.e.,

γj ≤ γ
[j]
max for all j) are active. In this particular case, the optimiza-

tion problem is trivial and all clusters simply transmit with γj = γ
[j]
max

for all j. Second, if
P

j∈J γ
[j]
max = 1 then the sum- and all individual-

constraints are active, and we simply have γj = γ
[j]
max for all j.

Finally, if
P

j∈J γ
[j]
max > 1 then the sum-constraint is always active

and some of the individual-constraints may be active while others

remain inactive. To solve the optimization problem in this later case,

we proceed as follows. First we ignore the individual constraints and

solve the problem with only the sum-constraint; then later on in this

section we shall show how to incorporate the individual-constraints

into the solution.

For solution to the problem (34) without considering the constraints

on individual γj’s, that is, to solve the problem

minimize
γj≥0, ∀j

X

j∈J

σ2
j ξjgjΨj

`

1 + (1 − α)Ptξjgj
´

subject to
X

j∈J

γj ≤ 1, (35)

we propose a primal–dual algorithm based on the Lagrange dual-

decomposition approach. For this purpose, we can write the Lagrange
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function associated with the problem as follows:

Λ(γ1, . . . , γNc ;µ) =
X

j∈J

Λj(γj , µ) − µ, (36)

where µ is a Lagrange multiplier (also called dual variable or price

value) associated with the constraint
P

j∈J γj ≤ 1 and

Λj(γj , µ) = σ2
j ξjgjΨj

`

1 + (1 − α)Ptξjgj
´

+ µγj . (37)

The corresponding dual objective function can be given by

Ω(µ) = minimize
γj≥0, ∀j

Λ(γ1, . . . , γNc ;µ)

=
X

j∈J

minimize
γj≥0

Λj(γj , µ) − µ, (38)

and the dual optimization problem can be written as

maximize
µ≥0

Ω(µ). (39)

For the dual objective Ω(µ), we need to find γj’s that minimize

Λ(γ1, . . . , γNc ;µ). To this end, for given µ, Ω(µ) can be obtained

by solving Nc separate problems as follows:

γj(µ) = arg min
γj≥0

Λj(γj , µ), j ∈ J . (40)

Note that, (40) corresponds to cluster j that can be solved by

the corresponding CH using simple line search algorithm for one-

dimensional minimization.

The optimal dual variable µ can be obtained by finding µ such that
P

j∈J γj(µ) = 1. This can be done by a one-dimensional numerical

search, for example, using bi-sectional search method or can be done

using gradient-ascent method that leads to the following updation rule

[13]:

µ(κ+1) =

»

µ(κ) + δ(κ)

„

X

j∈J

γj
`

µ(κ)´− 1

«–+

, (41)

where κ is an iteration-index, δ is a positive step-size parameter, and

γj
`

µ(κ)
´

is solution of (40) for given µ(κ). Because the underly-

ing primal optimization problem is convex and satisfies the Slater

constraint qualification conditions, therefore the primal variables

γj
`

µ(κ)
´

’s and the dual variable µ(κ) converge to their optimal values

as κ→ ∞ and at convergence there is zero-duality gap [13].

To solve the problem (34) including the constraints on individual

γj’s, we adopt the following iterative procedure.

i: Assume γ
(0)
t = 1 such that the sum-constraint can be written as

P

j∈J γj ≤ γ
(0)
t .

ii: Solve the optimization problem as outlined in (36)–(41) ignoring

the individual constraints.

iii: Construct the index-set L =
˘

j ∈ J |γj ≥ γ
[j]
max

¯

, and for all

j ∈ L set γj = γ
[j]
max.

iv: Recalculate the sum-constraint as γ
[ι]
t = γ

[ι−1]
t −

P

j∈L γ
[j]
max,

where ι is an iteration-index.

v: Recalculate γr for all r ∈ R[ι], where R[ι] = R[ι−1] \ J with

R[0] = J , as in step ii with the sum-constraint
P

r∈R[ι] γr ≤

γ
[ι]
t . Note that R[ι−1] \ L means all elements of R[ι−1] that are

not in L.
vi: Repeat step ii to step v until all constraints are satisfied.

As the given optimization problem is jointly convex over γj’s
and the objective function is a decreasing function of γj’s, thus the

solution given in (36)–(41) with the sum-constraint and the solution

obtained by the preceding iterative procedure incorporating both the

sum- and the individual-constraints are optimal.

From the viewpoint of implementation, the solution to given

optimization problem based on the primal–dual approach as outlined

in this section can be obtained in a distributed fashion with the

assistance of the CHs. Specifically, the FC first broadcasts an initial

price value, that is, the value of µ. This value is used by the CHs

to calculate γj’s by solving (40). Note that for CH j, the problem

(40) entirely depends on the local information concerning that cluster.

The new γj’s are then sent to the FC so that to update the price µ.
This updated value is then broadcasted to the CHs. This procedure

is repeated until γj’s and µ converge to their optimal value.

D. Optimization of βi,j’s

For optimization of βi,j’s, it is sufficient to consider the following

optimization problem for j ∈ J :

minimize
βi,j≥0, ∀i

σ2
j subject to

X

i∈Ij

βi,j ≤ 1, (42)

which is equivalent to

minimize
βi,j≥0, ∀i

X

i∈Ij

−αPtγjβi,jci,j
αPtγjβi,jci,jσ2

i,j + σ2
i,j + σ2

sj

subject to
X

i∈Ij

βi,j ≤ 1, (43)

where we can show that the objective function is a decreasing

function of βi,j and the problem is jointly convex over βi,j’s. The
optimal solution for βi,j’s is outlined in the following, which is

obtained by solving the Karush–Kuhn–Tucker optimality conditions

[14] associated with the problem (43).

βi,j =
σ2
sj

+ σ2
i,j

αPtγjci,jσ2
i,j

 s

αPtγjci,j
(σ2
sj

+ σ2
i,j)ηj

− 1

!+

, ∀i ∈ Ij , (44)

ηj =

0

B

B

@

P

κ∈Aj

1
σ2

κ,j

r

σ2
sj

+σ2
κ,j

αPtγjcκ,j

1 +
P

κ∈Aj

σ2
sj

+σ2
κ,j

αPtγjcκ,jσ
2
κ,j

1

C

C

A

2

, (45)

Aj =
n

i ∈ Ij
˛

˛

˛

αPtγjci,j
(σ2
sj

+ σ2
i,j)ηj

> 1
o

. (46)

For Pt → ∞, the solution for βi,j’s given in (44)–(46) converges to

lim
Pt→∞

βi,j =

s

σ2
s + σ2

i,j

ci,jσ4
i,j

 

X

l∈Ij

s

σ2
s + σ2

l,j

cl,jσ4
l,j

!−1

, ∀i ∈ Ij . (47)

From the implementation point of view, the CH j determines the

Lagrange multiplier ηj and broadcasts its value to all sensors in the

cluster. After knowing ηj , the sensors in the cluster j can calculate

βi,j’s by (44).

IV. PERFORMANCE EVALUATION

In this section, we corroborate the performance of the proposed

power scheduling scheme with some simulation examples. For this

purpose, we consider a WSN comprising Nc = 16 clusters with

sizes Nj = Nj−1 + 4 for all j ∈ J and N0 = 0. In each cluster,

the sensors are randomly and uniformly distributed as in [9]. The

correlation between the underlying sources of clusters j and k is

modeled as ρsj ,sk
= e−d

c
j,k/θ for all j and k, where dc

j,k denotes

the CH-to-CH distance between cluster j and k; and θ > 0 is a

scale parameter that controls how fast the correlation decays with

distance. We assume σ2
sj

= 1 for all j. The CH selection criterion

and the values of other system parameters (namely σ2
i,j’s, ci,j’s, and

gj’s) are same as in [9].

We compare the distortion performance of the proposed adaptive

power allocation (APA) design with a uniform power allocation

(UPA) scheme. In the UPA scheme we have α = αu = 0.5,
ξj = ξu = 1/Nc, γj = γu = 1/Nc, and βi,j = βuj

= 1/(Nj − 1)
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Fig. 2. Estimation Distortion comparison for correlated sources: (Case-1)
θ = 5e1, (Case-2) θ = 5e2, (Case-3) θ = 5e3, and (Case-4) θ = 5e4.

for all i ∈ Ij and j ∈ J . We also compare the performance of

the proposed power scheduling scheme with the the scheme given

in [9]. The results are averaged over 103 random deployment of the

sensors in each cluster. Here in all simulations, we assume α0 = 0
and γ

[j]
max = 1 for all j in J .

Fig. 2 plots and compares the estimation distortion of the APA and

UPA schemes as a function of Pt for different level of correlation

between the underlying sources. The correlation increases with in-

creasing value of θ. The figure shows that the distortion performance

of the proposed APA scheme is considerably better than that of

the UPA scheme and difference in performance of the two schemes

increases as the level of correlation increases. Moreover, we can see

that the performance of the APA scheme monotonically converges

to the UPA scheme as Pt increases, which is typical of the power-

constrained estimation schemes.

Next we compare the distortion achieved by the APA scheme

proposed in this paper, which is based on an approximation of the

distortion function by an upper bound, with the APA scheme we

proposed in [9], which is based on the exact distortion function; here,

the two schemes are denoted as CAS and CES, respectively. The

results are plotted in Fig. 3 for different level of correlation between

the sources. The figure shows that the CAS achieves distortion

which is quite close to that achieved by the CES for a wide

range of network transmit power and the correlation values. This

observation illustrates the effectiveness of the APA scheme based

on the distortion approximation vis-à-vis the scheme based on exact

distortion function.

V. CONCLUDING REMARKS

In this work we derived an adaptive power scheduling strategy

for distributed estimation of underlying correlated sources in cluster-

based hierarchical WSNs. The proposed power scheduling scheme is

based on the optimization problem where we target to minimize the

estimation distortion subject to constraints on transmit power of the

clusters as well as the network as a whole. Due to the correlation of

the sources, the solution based on exact distortion function requires

centralized scheduler. To this end, based on an upper-bound on the

estimation distortion, we proposed an alternative solution, which

bears favorable characteristics for distributed implementation and

gives distortion performance that matches quite closely with the

solution that relies on the exact formulation of estimation distortion.
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Fig. 3. Estimation Distortion comparison for correlated sources: (Case-1)
θ = 5e1, (Case-2) θ = 5e2, (Case-3) θ = 5e3, and (Case-4) θ = 5e4.

We also showed that compared to a uniform power allocation scheme,

the proposed adaptive power allocation design gives better distortion

performance.
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