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Abstract— We consider a wireless sensor network deployed to
observe a physical phenomenon. The sensors amplify and forward
their observations to a remote fusion center via single hop. The
objective is to maximize the operational lifetime of the network
such that the estimate of the underlying source at FC satisfies
a certain fidelity criterion given by the maximum tolerable
estimation distortion. Each sensor is powered by a battery which
limits its lifetime and consequently of the network also. Recent
studies show that the battery discharge behavior is dependent on
the load current: higher current leads to higher losses inside the
battery due to the non-linearities of the electrochemical reaction
in the battery. This work presents a power allocation design
where goal is to maximize the network lifetime incorporating
the non-linear discharging behavior of the batteries. The design
is based on the knowledge of the instantaneous channel gains
as well as when we only know the channel statistics. The
numerical examples illustrate that the impact of battery-aware
power scheduling on the network life is substantial.

I. INTRODUCTION

A wireless sensor network (WSN) consists of spatially
distributed sensors that cooperatively monitor physical or
environmental conditions - temperature, vibration, pressure,
motion or pollutants. Here we assume that the sensors transmit
their noisy observations via single-hop to a remote fusion
center (FC) which forms the global estimate of the under-
lying source. Each sensor node is powered by a battery
with limited energy which is assumed to be non-rechargeable
and irreplaceable because the nodes may be deployed in a
hostile or inaccessible terrain. The objective is to keep the
network operational to the maximum possible time such that
the estimation distortion is less than a maximum tolerable
threshold. As each sensor is powered by a non-rechargeable
battery, the objective of network lifetime maximization can
be achieved by minimizing the consumed energy in each
observation instance. To this end, minimal-energy estimation
techniques have been considered in [1]- [3]. There are other
schemes which deal with the minimal-energy data collection
at a central access point from the sensors [4]. Very recently
Li et al. in [5] presented a joint source coding and routing
design for lifetime maximization in a multihop network. All
these schemes, assume ideal battery with fixed usable capacity.
However, recent studies show that the discharge behavior of
the battery is not ideal. Due to non-linearities, in addition to the
energy delivered to the load, some energy is locked inside the
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battery which is unavailable [6], [7]. Consequently the total
apparent consumed energy is always greater than the actual
energy delivered to the load. Moreover, some of the locked
energy is recovered by introducing rest periods. The battery
is dead when the apparent consumed energy reaches a certain
threshold value.

In this work, we first develop a theoretical model for the
energy consumption of the battery which takes into account
the nonlinear discharge behavior and the recovery effect.
Subsequently from this model, we introduce a cost function
which takes into consideration the load history for a particular
sensor. Then based on the cost function we propose a battery-
aware power allocation for the network-lifetime maximization
in a single-hop network such that the estimation distortion does
not exceed a maximum tolerable limit. The proposed scheme
assumes perfect knowledge of the fading channel gains from
the sensors to the FC in each observation instance. However,
in practical systems due to resource constraints we may only
know the statistics of the channels. To this end, we develop
an expression for the average estimation distortion assuming
the channel gains are independently Rayleigh distributed and
subsequently we propose the power-allocation scheme.

II. PRELIMINARIES

A. System Model

We consider the sensor network comprising N sensors
deployed to observe a source s. Each sensor node amplifies
and forwards the noisy observation to the fusion center (FC)
via some orthogonal multiple-access scheme, e.g. FDMA.
The received signal is zi(n) = hi(n)αi(n)(s(n) + ni(n)) +
wi(n), ∀i, where ni(n) is the observation noise, wi(n) is the
receiver noise, the |hi(n)| is the channel gain and αi(n) is the
amplifying factor for sensor i at discrete time n. We assume
that the observation and the receiver noises are respectively
zero-mean and independently distributed across sensors and
time with variances σ2

ni and σ2
wi , ∀i. The channel gains from

the sensors to the FC are independently flat fading. The task
of the FC is to estimate the source s(n) based on the received
observations from the sensors. We assume that the parameter
s(n) is deterministic and we have the second order statistics of
the observation and the communication noises. The estimate
ŝ(n) is based on BLUE estimation rule [8]:

ŝ(n) =

(
N∑
k=1

|hk(n)|2α2
k(n)

|hk(n)|2α2
k(n)σ2

nk
+ σ2

wk

)−1



N∑
k=1

|hk(n)|αk(n)zk(n)
|hk|2α2

k(n)σ2
nk

+ σ2
wk

(1)

with the associated variance of the estimation error given by

D =

(
N∑
k=1

|hk(n)|2α2
k(n)

|hk(n)|2α2
k(n)σ2

nk
+ σ2

wk

)−1

. (2)

Let Pk(n) = α2
k(n) denotes the power drawn from the battery

and ζk(n) := |hk(n)|2
σ2
wk

defines the channel SNR of sensor k.
Now the distortion D can be written as

D =

(
N∑
k=1

Pk(n)
Pk(n)σ2

nk
+ 1

ζk(n)

)−1

. (3)

Note that for ζk(n) → ∞ ∀k ∧ n (i.e. ideal communi-
cation channels), the estimation distortion becomes D0 =(∑N

k=1
1
σ2
nk

)−1

. The estimator which achieves this distortion
is called clairvoyant estimator and is used as a performance
benchmark.

B. Battery Aware Cost Function

As pointed out in [9] and the references therein, the battery
tends to provide more usable capacity at a low discharge
current. Generally, the deliverable capacity of a fully charged
battery decreases/degrades from the normalized usable capac-
ity as the discharge current is increased. This motivates us to
operate the sensors at the low discharge current to increase
the lifetime of the individual sensors and consequently of the
entire network. The battery model in [6] , [7] shows that when
a load is applied to a real battery, the apparent charge lost
from the battery comprises two components: (i) the actual
charge delivered to the load and (ii) a charge which is locked
inside the battery called unavailable charge. The unavailable
charge is dependent on the battery parameters as well as on
the load current. The higher the load current, the higher is the
unavailable charge. The unavailable charge also increases with
the load duration.

The battery model in the sequel is based on the work in [6]
and is obtained by solving the partial differential equations
of the electrochemical process for a simple 1-dimensional
cell model based on the Fick’s laws and Faraday’s law with
associated initial and boundary conditions.

Assume that all sensors start sampling the observations at
the same time instance and with equal sampling frequency.
Let Ts be the sampling period and the corresponding sampling
instances are

t = 0, Ts, 2Ts, 3Ts, . . . , nTs, (n+ 1)Ts, . . . . (4)

We assume a step-wise constant power drawn from the battery
of sensor k corresponding to the sampling periods, i.e.

Pk(1), Pk(2), Pk(3), . . . , Pk(n), Pk(n+ 1), . . . . (5)

Let the total initial energy available from the battery of sensor
k be E∗k . Following theorem describes relationship between
the available energy and consumed energy.

Theorem 1: At sensor k at the end of nth observation cycle,
the remaining available energy is

Erk (n) = E∗k − Eck (n) ,

where

Eck (n) = 2
n∑
j=1

Pk(j)
φ

∞∑
m=1

1− e−β2m2Ts

β2m2
e−β

2m2(n−j)Ts

︸ ︷︷ ︸
:=E(u)

ck
(n)

+
n∑
j=1

Pk(j)
φ

Ts︸ ︷︷ ︸
:=E(l)

ck
(n)

= E(u)
ck

(n) + E(l)
ck

(n) (6)

denotes the total apparent consumed energy at sensor k up to
and including the nth observation sample. In (6), φ denotes
the conversion efficiency of a DC-DC converter and β is
a parameter characterizing the nonlinear characteristics of
the battery. The higher the value of β, the smaller is the
unavailable energy which means that the battery discharge
behavior is more close to an ideal battery. Note that we
have assumed that the circuit energy consumption and the
energy consumed in the sensing process is much less than
the transmission energy and hence negligible. Nevertheless,
these energies can be easily included in the battery model.

Proof: See appendix I for proof of Theorem 1.
The apparent consumed energy Eck (n) comprises two

components: E(l)
ck (n) is the actual energy delivered to the load

and E(u)
ck (n) is the energy which is locked inside the battery

and is called unavailable energy. However, introducing rest
period of duration ∆Ts, part of E(u)

ck (n) is recovered and
available energy increases Erk(n+ ∆) = Erk(n) + δE

(u)
ck (n)

with δ ∈ [0 1] and ∆ ∈ Z+, where Z+ is a set of
positive integers. Note the analogy to the energy consumed in
a resister and the energy stored in a capacitor. Fig. 1 plots the
consumed and remaining energy of a battery with E∗ = 103 J ,
Ts = 1 sec, β = 0.06 (sec)−0.5 and load profile P =
[24.77 dBm, n = 1, . . . , 800], P = [0, n = 801, . . . , 1300],
P = [26.99 dBm, n = 1301, . . . , 1800], P = [0, n =
1801, . . . , 2800] and P = [26.02 dBm, n = 2801, . . . , 3800].
The figure shows that the battery survives up to ne. We can
also observe the recovery effect due to the rest periods.

A sensor is considered to be dead if the remaining energy
is less that a certain threshold value. Therefore, the life of the
sensor node k is defined as

SLk = {n | Erk(n) ≥ Eth ∧ Erk(n+ 1) < Eth} , ∀k. (7)

Based on the definition of lifetime for single sensor, we
can define the network lifetime as follows: the network is
considered non-functional if any of the sensors is dead [4],
i.e. NL = min {SL1, . . . ,SLN} or the network is dead if a
certain percentage of the total sensors is dead. Note that these
definitions of the network lifetime are very conservative to the
least and utterly inappropriate from the functionality point of
view because even if a single sensor or a portion of the sensors
is dead, the network comprising the remaining sensors may
still be able to perform the sensing with acceptable fidelity.



Fig. 1: Energy consumption model.

From the functional point of view the sensor network is dead
if it is unable to achieve the target distortion i.e.

NL = {n |D(n) ≤ Dmax ∧D(n+ 1) > Dmax} . (8)

In our work we adopt the functional definition of the network
lifetime according to which the network life is measured
in terms of observation samples or observation cycles suc-
cessfully processed, where success is measured in terms of
achieved distortion not exceeding a certain maximum accept-
able level Dmax.

In order to extend the network lifetime, it is equivalent to
maximize the remaining energy or minimize the consumed
energy of the batteries during each observation cycle while
taking into account the load history. For this purpose, we
define the following cost function for sensor k:

fk(n) = Eck(n) + νk(n)Pk(n), (9)

where νk(n) denotes the price of using power Pk(n) and is
further explained in the next section. The system-wide cost
function is defined as follows:

f(n) =
N∑
k=1

fk(n). (10)

III. POWER ALLOCATION FOR NETWORK LIFETIME
MAXIMIZATION

A. Power Allocation with Perfect Channel State Information
We base our power allocation design for network lifetime

maximization on the following optimization problem:

min
Pk(n), ∀k

f(n)

s.t.
N∑
k=1

Pk(n)
Pk(n)σ2

nk
+ 1

ζk(n)

≥ 1
Dmax

,

Eck(n) ≤ E∗k , Pk(n) ≥ 0, ∀k ∧ n. (11)

To solve the given problem, we first ignore the constraint
Eck(n) ≤ E∗k , ∀k ∧ n which we will later incorporate in
the solution and solve the relaxed problem using method of

Lagrangian multipliers. The Lagrangian function associated
with the problem is

L (Pk(n), λ(n), µk(n)) = f(n)−
N∑
k=1

µk(n)Pk(n)

+ λ(n)

(
1

Dmax
−

N∑
k=1

Pk(n)
Pk(n)σ2

nk
+ 1

ζk(n)

)
. (12)

Since the given problem is convex, the KKT conditions
are sufficient for optimality. According to these conditions,
µi(n) > 0 for Pi(n) = 0 and in this case, the sensor
is switched-off. For Pi(n) > 0, the Lagrangian multiplier
µi(n) = 0. For this particular case, setting the derivative of
(12) w.r.t. Pi(n) to zero and solving for Pi(n) we get

Pi(n) =
1

σ2
niζi(n)

(√
λ(n)ζi(n)

ai(n) + νi(n)
− 1

)+

, (13)

where λ(n) is Lagrangian multiplier associated with the dis-
tortion constraint, (x)+ = max(x, 0) and ai(n) is

ai(n) =
1
φ
Ts + 2

1
φ

∞∑
m=1

1− e−β2m2Ts

β2m2
. (14)

Let Ẽci(n) := E
(l)
ci (n− 1) + E

(u)
ci (n) defines the apparent

consumed energy of sensor i at the end of nth sample if
Pi(n) = 0. Note that Ẽci(n) ≤ Eci(n−1) due to the recovery
effect. We assume that if E∗i − Ẽci(n) ≤ ε then Pi(n) = 0,
where ε > 0. Without loss of generality, we assume

Ẽc1(n) ≤ Ẽc2(n) ≤ . . . ≤ ẼcN (n) (15)

and let B be defined as an index-set of the potential sensors
which can participate in the estimation of nth observation
sample, i.e. B = {k

∣∣ E∗k − Ẽck(n) > ε}. Eq. (13) shows that

for any i ∈ B we have Pi(n) = 0 whenever
√

λ(n)ζi(n)
ai(n)+νi(n) ≤ 1.

Without loss of any generality, we have

λ(n)ζ1(n)
a1(n) + ν1(n)

≥ λ(n)ζ2(n)
a2(n) + ν2(n)

≥ . . . ≥ λ(n)ζK(n)
aK(n) + νK(n)

.

(16)

Let us define the following set

A =

{
j
∣∣ j ∈ B ∧√ λ(n)ζj(n)

aj(n) + νj(n)
> 1

}
, (17)

where M = max (A) such that Pκ(n) > 0 holds for 1 ≤ κ ≤
M .

Since the given optimization problem is convex, the op-
timum transmit powers occur at the distortion constraint
boundary, i.e. the constraint is active. Therefore, the λ(n) must
satisfy the distortion constraint with equality and is given by

√
λ(n) =

∑M
j=1

1
σ2
nj

√
aj(n)+νj(n)

ζj(n)∑M
j=1

1
σ2
nj

− 1
Dmax

=
A(M)(n)
B(M)(n)

. (18)

Let us define g(M) =
√

ζM (n)
aM (n)+νM (n)

A(M)(n)
B(M)(n)

− 1 for 1 ≤
M ≤ K, where K = max (B). From (17), we can see



that g(M) > 0 and g(M + 1) ≤ 0. Moreover, if M = K
then g(M + 1) = 0. For κ ∈ A, we have Pκ(n) > 0.
The corresponding total consumed energy Ecκ(n) can be
calculated from (6) which is greater than Ẽcκ(n). Furthermore,
if for Pκ(n) > 0, the consumed power Ecκ(n) is greater than
the battery capacity E∗κ then we clamp the Pκ(n) such that
Ecκ(n) = E∗ with the resultant transmit power P ′κ(n) which
is less than Pκ(n). Furthermore, we change the distortion
constraint as follows:∑

j∈A\κ

Pj(n)
Pj(n)σ2

nj + 1
ζi(n)

=
1

D′max
(19)

where 1
D′max

= 1
Dmax
− P ′κ(n)

P ′κ(n)σ2
nκ

+ 1
ζκ(n)

and reallocate power

to A\κ sensors likewise until the distortion and the battery
capacity constraints are satisfied. Note that A\κ means all
elements of set A except κ.

Eq. (13) shows that the sensors with better observation
quality, i.e. low observation noise variance are required to
transmit with higher power. Consequently, they will die earlier
than the sensors with higher observation noise variances. Note
that the observation quality of the remaining sensors may not
be good enough to achieve the target distortion. This fact
motivates us to keep the good sensors alive by introducing
augmented cost function with the power price νk(n) in (9).
We propose the power price factor to be

νk(n) =
n−1∑
j=1

(
Pk(j)
φ

Ts + 2
Pk(j)
φ

∞∑
m=1

1− e−β2m2Ts

β2m2
e−β

2m2(n−j)Ts

)
(20)

which is the apparent energy consumed due to the powers
drawn from the battery up to and including the (n − 1)th
observation cycle (cf. (6)). In this way the sensor which has
already consumed most of its battery capacity will increasingly
transmit with less power and hence will remain alive.

B. Power Allocation with Knowledge of Channel Statistics

The network lifetime maximization problem presented in
the preceding section requires instantaneous channel state
information of the communication channels from the sensors
to the FC. However, in practical systems due to constraints,
only channel statistics may be available. We now present
a scheme for network lifetime maximization based on the
knowledge of channels distributions.

Theorem 2: Given that the communication channels from
the sensors to the FC are independently Rayleigh distributed
with zero mean, the estimation distortion can be lower
bounded as follows:

DLB
avg =

(
1
D0
− 1

2

N∑
i=1

log
(
1 + 2σ2

ni ζ̄iPi
)

σ4
ni ζ̄iPi

)−1

, (21)

where D0 =
(∑N

i=1
1
σ2
ni

)−1

denotes the MSE achieved by

the clairvoyant BLUE estimator and ζ̄i =
σ2
gi

σ2
wi

is channel

SNR with σ2
gi specifying the variance of the Rayleigh fading

channel of sensor i.
Proof: See Appendix II.
Corollary 1: In the low channel SNR regime, the average

distortion DLB
avg approaches to infinity, i.e. limζ̄i→0, ∀i D

LB
avg =

∞; and in high channel SNR regime, it converges to the MSE
of clairvoyant estimator, i.e. limζ̄i→∞, ∀i D

LB
avg = D0. The

proof follows directly by substituting the identities

lim
ζ̄i→0, ∀i

1
2σ2

ni ζ̄iPi
log
(
1 + 2σ2

ni ζ̄iPi
)

= 1, (22)

lim
ζ̄i→∞, ∀i

1
2σ2

ni ζ̄iPi
log
(
1 + 2σ2

ni ζ̄iPi
)

= 0, (23)

in (21) respectively .
We now consider the following optimization problem:

min
Pi(n), ∀i

f(n)

s.t.
1
D0
− 1

2

N∑
i=1

log
(
1 + 2σ2

ni ζ̄iPi(n)
)

σ4
ni ζ̄iPi(n)

≥ 1
Davg

max
,

Eci(n) ≤ E∗i , Pi(n) ≥ 0, ∀i ∧ n, (24)

where the cost function f(n) is defined in (10). The given
optimization problem is convex (see Appendix III).

Once again to find the solution we use Lagrangian multi-
pliers method. Moreover, we ignore the constraint Eci(n) ≤
E∗i , ∀i ∧ n which we can later incorporate in the solution.
Since the given optimization problem is convex, therefore the
KKT conditions are sufficient for optimality of the solution.
Taking the derivative of the Lagrangian function and setting
it to zero, we get for Pk(n) > 0 as follows:

log
(
1 + 2σ2

nk
ζ̄kPk(n)

)
P 2
k (n)

−
2σ2

nk
ζ̄k

Pk(n)
(
1 + 2σ2

nk
ζ̄kPk(n)

)
=

2σ4
nk
ζ̄k

λ(n)
[ak(n) + vk(n)] . (25)

The closed form solution of (25) seems hard to find. Therefore,
we resort to numerical methods to compute the power allotted
to the sensors k = 1, . . . , N . Note that λ(n) is Lagrangian
multiplier which should be determined such that to satisfy the
distortion constraint with equality.

Homogeneous Sensor Network: For a homogeneous sensor
network (i.e. σ2

ni = σ2
n and ζ̄i = ζ̄, ∀i), the solution to the

power allocation problem becomes trivial with Pi = P, ∀i. In
this case, the lower bounded average distortion becomes

DLB
avg =

1
N
σ2
n
− N2

2σ4
nζ̄Ptot

log
(

1 + 2σ2
nζ̄Ptot
N

) , (26)

where we have assumed that Ptot = NP .
Corollary 2: For finite σ2

n, ζ̄ and Ptot, we have
limN→∞ DLB

avg = 1
ζ̄Ptot

. For proof, note that as N →∞ then

log
(

1 + 2σ2
nζ̄Ptot
N

)
≈ 2σ2

nζ̄Ptot
N − 2σ4

nP
2
totζ̄

2

N2 [cf. log(1 + x) ≈
x− x2

2 , |x| ≤ 1] based on which from (26) we get the desired
relation. This shows that for large number of sensors, the
average distortion converges to the value 1

ζ̄Ptot
regardless of

the observation noise variances σ2
n, which means adding more



sensors for given Ptot does not decrease the average distortion.
It has been proved in [2] that in such a case adding more
sensors improve the outage probability.

IV. NUMERICAL EXAMPLES AND DISCUSSION

Consider a wireless sensor network comprising N = 50
sensor nodes uniformly distributed in a 500 × 500 grid with
FC at the center. The observation noise variance is σ2

ni = 0.01
and the receiver noise variance is σ2

wi = −90 dBm, ∀i. The
channel gain is |hi|2 = G0d

−αgi, ∀i, where di is distance
between sensor i and FC; α denotes the pathloss exponent; G0

depends on the carrier frequency and gains of the transmit and
receive antennas; gi’s are i.i.d. Rayleigh-fading random vari-
ables with unit variance. We assume α = 2 and G0 = −30 dB.
The initial battery energy is E∗i = 103 J, ∀i, Ts = 1 sec
and β = 0.06 (sec)−0.5. The network lifetime is averaged
over Tr = 103 independent realizations. The examples in
the sequel assume perfect CSI. Due to space constraint, the
examples for statistical channels knowledge are not included
here.

We compare the average lifetime achieved by our proposed
power allocation design with a scheme which does not take
into consideration the nonlinear battery discharge effects (i.e.
assume E(u)

ci (n) = 0 and νi(n) = 0, ∀i∧n in the power allo-
cation design) when allocating power to the sensors for a given
target distortion. Henceforth the two schemes are respectively
denoted as battery-aware scheme (BAS) and battery-unaware
scheme (BUS). Fig. 2 plots the network lives (in terms of
average number of samples NLavg = 1

Tr

∑Tr
l=1NLl for NL

defined in (8)) achieved by the two schemes when the gi’s are
i.i.d. Rayleigh fading. Similarly Fig. 3 compares the lives when
channels are fixed, i.e. gi = 1, ∀i. In both cases, we can see
that the percentage increase in the lifetime achieved by BAS
compared to BUS is substantial. These examples, illustrate the
importance of considering the battery discharge behavior in the
power allocation for network lifetime maximization.

Fig. 2: Comparison of network lives for fading channels.

Fig. 3: Comparison of network lives for fixed channels.

V. CONCLUSIONS

In this contribution we have proposed a joint power alloca-
tion design for lifetime maximization of a single-hop wireless
sensor network where each sensor is powered by a battery
with limited capacity. Herein, we considered two cases: perfect
knowledge of the instantaneous channel gains is available and
when we only know the distribution of the channels. For
the later case, we proposed a lower bound on the average
distortion. Our proposed design takes into consideration the
non-linearities of the battery discharging process. We have
shown that the battery-aware power scheduling impacts the
network lifetime to a substantial extent compared to a scheme
which ignores the non-linear discharging behavior of the
batteries in the power allocation scheme.

APPENDIX I
PROOF OF THEOREM 1

In [6], Rakhmatov et al. obtained following expression
for remaining concentration Ck(t) of electroactive species at
the electrode-electrolyte interface at time t by solving the
electrochemical and diffusion equations with the associated
initial and boundary conditions for a simple one-dimensional
battery model based on the Fick’s laws and Faraday’s law:

Crk (x, t) =C∗k −
1

vFAw

(∫ t

0

ik (τ) dτ

+2
∫ t

0

ik (τ)
∞∑
m=1

e−β
2m2(t−τ)dτ

)
, (27)

where C∗k is initial concentration, A is area of the electrode,
F is Faraday’s constant, w is width of the electrolyte region,
v is number of electrons, ik (t) is the load current at time t
for the battery of sensor k and β is a parameter characterizing
nonlinear characteristics of the battery. Assume a step-wise
constant load current corresponding to the sampling instances



given in (4), i.e.

ik (t) = Ik(1), Ik(2), . . . , Ik(n), Ik(n+ 1), . . . . (28)

Then solving (27), we can show that the remaining charge at
the end of the nth sample is given by

Qrk (n) = Q∗k −
n∑
j=1

Ik(j)Ts−

2
n∑
j=1

Ik(j)
∞∑
m=1

1− e−β2m2Ts

β2m2
e−β

2m2(n−j)Ts , (29)

where Q∗k = vFAwC∗k . The battery is considered to be dead
when Qrk (n) < Qth where Qth is a threshold value.

Usually to provide a specific supply voltage V to the
sensor-node electronics a DC-DC converter is used. Assume φ
denotes the efficiency of the converter, then the current Ik(n)
in the observation sample n draws power Pk(n) from the
battery as follows:

Pk(n) = φV Ik(n), (30)

substituting this in (29) and noting that the energy E can be
written as E = QV , we get (6).

APPENDIX II
PROOF OF THEOREM 2

The instantaneous distortion D can be written as

D =
1∑N

i=
ζiPi

ζiPiσ2
ni

+1

=
1∑N
i= ui

(31)

and the average distortion is

Davg = E{u1,...,uN}

[
1∑N
i= ui

]
. (32)

Since D is a convex function of the random variables ui’s,
therefore applying Jensen’s inequality we get the following
lower bound on the average distortion:

Davg ≥
1

E{u1,...,uN}

[∑N
i= ui

] =
1∑N

i=E [ui]
. (33)

Assuming that the channel gain |hi| is Rayleigh distributed
with zero mean and variance σ2

gi , we can show that

E [ui] =
Piσ

2
ni −

1
ζ̄i
e

1
σ2
ni
ζ̄iPiEi

(
1, 1

σ2
ni
ζ̄iPi

)
Piσ4

ni

, (34)

where Ei
(

1, 1
σ2
ni
ζ̄iPi

)
=
∫∞

1
e

−t
σ2
ni
ζ̄iPi

t dt denotes exponential

integral which can be bounded as

1
2
e−x log

(
1 +

2
x

)
< Ei(1, x) < e−x log

(
1 +

1
x

)
, (35)

for x > 0 and x = 1
σ2
ni
ζ̄iPi

[10]. From (33), (34) and (35), we
get

Davg ≥ DLB
avg =

1
1
D0
− 1

2

∑N
i=1

log(1+2σ2
ni
ζ̄iPi)

σ4
ni
ζ̄iPi

, (36)

where D0 =
(∑N

i=1
1
σ2
ni

)−1

and log denotes natural loga-
rithm.

III. CONVEXITY OF OPTIMIZATION PROBLEM IN (24)
The objective function is affine and hence convex. Now for

the problem to be convex, the inequality constraint

g(Pi) =
1

Davg
max
− 1
D0

+
1
2

N∑
i=1

log
(
1 + 2σ2

ni ζ̄iPi
)

σ4
ni ζ̄iPi

≤ 0 (37)

must be convex. To this end, it suffices to show that all second
order derivatives of g(Pi) are non-negative, i.e. ∂2g

∂P 2
i
≥ 0 and

∂2g
∂Pi∂Pj

≥ 0 for all i and j. Note that ∂2g
∂Pi∂Pj

= 0, ∀i ∧ j.
Moreover,

∂2g

∂P 2
i

=
1

σ4
ni ζ̄iPi

[
log
(
1 + 2σ2

ni ζ̄iPi
)

Pi
−

2σ2
ni ζ̄i

(
1 + 3σ2

ni ζ̄iPi
)(

1 + 2σ2
ni ζ̄iPi

)2
]

(38)

∀i, which is non-negative only if the term in square-brackets
is non-negative, i.e.

log (1 + 2xi) ≥
6x2

i + 2xi
4x2

i + 4xi + 1
, (39)

where xi = σ2
ni ζ̄iPi. Note that limxi→∞ log (1 + 2xi) =

∞ and limxi→∞
6x2
i+2xi

4x2
i+4xi+1

= 3
2 . Therefore condi-

tion in (39) holds as xi → ∞. Similarly, note that
limxi→0 log (1 + 2xi) = 0 and limxi→0

6x2
i+2xi

4x2
i+4xi+1

= 0,
which shows that (39) holds for xi → 0 as well. The given
condition also holds for any 0 ≤ xi ≤ ∞. Therefore the given
optimization problem is convex.
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