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Abstract— This work addresses the problem of joint quanti-
zation and power allocation in wireless sensor networks where
sensors observe a source, quantize their observations and
transmit to a fusion center (FC) which reconstructs the source
using linear minimum mean-squared error (LMMSE) estima-
tion rule. The sensors employ scalar quantizers to quantize
the observations. We formulate the reconstruction distortion
without imposing any statistical structure on the quantization
noise and without making any simplifying assumption about
the contribution of the channel errors to the reconstruction
distortion. Based on the formulation, we outline a solution to
the problem of joint quantization and power allocation based
on minimization of the distortion subject to a constraint on the
network transmit power. We illustrate the effectiveness of the
proposed solution with some numerical examples.

I. INTRODUCTION

Wireless sensor networks consist of spatially distributed sensors
that cooperatively monitor physical or environmental conditions.
The networks are characterized by limited energy, bandwidth
and computational complexity. In this work, our objective is to
reconstruct the underlying source subject to resource constraints so
that the overall distortion (e.g. mean squared error) be minimized.

We consider a system where individual sensors quantize and
transmit their noisy observations of a common source, via some
orthogonal multiple access scheme, e.g. TDMA or FDMA, to a
remote fusion center (FC). The FC reconstructs the underlying
source based on a linear minimum mean squared error (LMMSE)
estimation rule. The sensors have partial and correlated observa-
tions of the source. The correlation exists where sensors measure
data in the same geographical location, e.g. acoustic sensors that
are sensing a common event produce measurements that are cor-
related. In addition, observation noise and communication channel
may not have same conditions across all sensors. Therefore, inde-
pendent quantization and transmission of the observations is not an
optimal strategy.

A number of quantization and power allocation schemes has
been proposed over the years to estimate a source in sensor
networks, see [1]- [5] and references therein. In these works an
unknown parameter is estimated by a set of distributed sensors
nodes using BLUE or MLE estimation rules based on the quantized
sensors observations. Therein, to model the estimation distortion,
the authors assume some kind of statistical structure about the
quantization noise and the contribution of the channel errors to
the estimation distortion. Moreover, they do not exploit the spatial
correlation and in some cases assume ideal communication chan-
nels or the homogenous sensor noise. To this end, in this work,
we present a joint design of quantization and power allocation in
the sensor network which takes into account the spatial correlation
and cross-correlations of the observations, the observation quality
and the communication channels to the FC. The joint quantization

The authors would like to thank the Walloon region ministry DGTRE
framework program COSMOS/TSARINE and EU project FP7 NEWCOM++
for the financial support and the scientific inspiration.

and power allocation scheme is based on minimization of the
reconstruction distortion subject to a constraint on the network
transmit power. The sensors use scalar quantizers to quantize
their observations. The distortion is formulated based on LMMSE
estimation rule wherein we do not impose any statistical structure
on the quantization noise. Moreover, this formulation does not
make any simplifying assumption about the contribution of the
channel errors to the total distortion.

II. SYSTEM MODEL

Consider the system model shown in Fig. 1 in whichN spatially
distributed sensors observe an unknown zero-mean real Gaussian
random source s ∼ N (0, σ2

s), and communicate with the fusion
center (FC) via orthogonal multiple access channels. Each sensor
has a partial and noisy observation of the source, and sends a
quantized version of it to the FC. The FC collects the signals from
all sensors and reconstructs the source. The si ∼ N (0, σ2

si) and
ni ∼ N (0, σ2

ni) respectively denotes the partial observation of the
source s and the noise corrupting this observation such that the
noisy observation at sensor i is

xi = si + ni, i = 1, . . . , N, (1)

where ni is independent across sensors and is also independent of
s and {si}Ni=1.

Fig. 1: Block diagram of the system.

In order to keep the exposition tractable, we assume that
the sensors employ scalar quantization scheme to quantize their
observations and the encoding of the quantization indices does
not consider entropy coding, that is fixed length coding is used.
At sensor i, the quantization function Qi can be viewed as a
mapping which maps xi to one of the finite set of rational numbers
{m1i , . . . ,mMi

} as follows:

Qi : xi → mi

mi = mki , for uki < xi ≤ uki+1, ki = 1, . . . ,Mi, (2)

where uki ’s are quantization interval boundaries and mi’s are
quantization values (also called representation or reconstruction



values ). At sensor i, the index ki corresponding to the quantized
value mki is encoded according to some labeling rule, e.g. natural
binary code, and then the resulting bits are transmitted to the
FC using a digital modulation scheme, e.g. BPSK, PAM, QAM.
Without considering entropy coding, we require Li = log2Mi
bits to encode the Mi quantization indices. The Encod block, in
Fig. 1, performs the functions of encoding the quantization indices
and the modulation of the resulting bits. The Decod block at the
FC performs converse functions (demodulation and mapping of the
received bits to the quantized values) of the corresponding Encod
block. In this work we do not consider channel coding.

The sensors transmit the quantization indices to the FC via
orthogonal channels where each channel experiences flat fading
independent over time and across sensors. The fading channels
{hi}Ni=1 between sensors and the FC are hi ∼ CN (0, σ2

hi
),∀i

with gain factors {gi = |hi|}Ni=1 which are Rayleigh distributed.
We assume that the channels {hi}Ni=1 are perfectly known at
FC and do not change during the estimation of each observation
sample. The wi ∼ CN (0, 2σ2

wi) denotes the receiver noise which
is independent across the sensors and is also independent of s,
{si}Ni=1 and {ni}Ni=1.

We assume that the source s, the observation si at sensor i
and the observation sj at sensor j are jointly Gaussian distributed
having zero mean and covariances Cov {s, si} = σsσsiρsi,
Cov

{
s, sj

}
= σsσsjρsj and Cov

{
si, sj

}
= σsiσsjρij , ∀i

and ∀j. Note that ρsi specifies correlation between s and si, and
ρij specifies correlation between si and sj . We use the power
exponential model to specify these correlation coefficients, see [6]
and reference therein. Moreover, we assume that the samples of s,
si, ni and wi are independent in time.

Assuming that the sensor observations {xi}Ni=1 are available at
the FC then the optimal estimator in the mean-squared error sense
is the conditional mean of s given {xi}Ni=1, that is ŝ0 = E[s|xi, ∀i],
where E denotes the mathematical expectation operator. Under
the jointly Gaussian assumption of s and {xi}Ni=1, the conditional
mean estimator turns out to be linear and is called linear minimum
mean-squared error estimator (LMMSEE) which can be written as
ŝ0 = cT (Cs + Cn)−1x with the associated MSE distortion

D0 = σ2
s − cT (Cs + Cn)−1c, (3)

where c = E[xs], Cs = E[ssT ] and Cn = E[nnT ] with x =
[x1, . . . , xN ]T , s = [s1, . . . , sN ]T and n = [n1, . . . , nN ]T [7].
The estimator which achieves the distortion D0 is called a clair-
voyant estimator and is used as a performance benchmark. Note
that the distortion achieved by any estimator (designed to minimize
the mean-squared estimation error) based on the quantized sensor
observations is lower bounded by D0.

In the sequel, firstly we formulate the joint quantization and
power allocation problem based on the optimum scalar quantiza-
tion (optimum in LMMSE sense) and subsequently we outline a
solution to the joint quantization and power allocation problem and
show its effectiveness with some numerical examples.

III. JOINT QUANTIZATION AND POWER ALLOCATION

The FC employs the LMMSE estimation rule to form the
estimate ŝouq of the source s based on the received messages{
m′i
}N
i=1

from the sensors, that is

ŝouq =

N∑
i=1

vim
′
i (4)

where {vi}Ni=1 are the LMMSE weighting coefficients. The cor-
responding estimation distortion measured as mean-squared error

between the estimate and the source can be written as

Douq = E{s,si,ni,wi|hi,∀i}
[
(s− ŝouq)2

]
,

= σ2
s − 2

N∑
i=1

viai +

N∑
i=1

v2i bi +

N∑
i=1

N∑
j 6=i

v′iv
′
jcij , (5)

with ai, bi and cij defined as follows:

ai =

Mi∑
li=1

Mi∑
ki=1

m′lip
(
m′li |mki

) ∫
s

∫
si

sfs,si(s, si)

p
(
mki |si

)
dsdsi,

bi =

Mi∑
li=1

Mi∑
ki=1

(m′li)
2p
(
m′li |mki

) ∫
si

fsi(si)p
(
mki |si

)
dsi,

cij =

Mi∑
li=1

Mi∑
ki=1

Mj∑
νj=1

Mj∑
κj=1

m′lim
′
νjp
(
m′li |mki

)
p
(
m′νj |mκj

)
∫
si

∫
sj

fsi,sj (si, sj)p
(
mki |si

)
p
(
mκj |sj

)
dsidsj , (6)

where fsi(si), fs,si(s, si) and fsi,sj (si, sj) are probability den-
sity functions, p

(
mki |si

)
denotes the probability of quantizing to

mki for given si and p
(
m′li |mki

)
is channel transition probability

- the probability of receiving m′li when mki is transmitted. The
quantization probability p

(
mki |si

)
is given by

p
(
mki |si

)
=

1√
2πσ2

ni

∫ uki+1

uki

e

−(xi−si)
2

2σ2
ni dxi, (7)

for i = 1, . . . , N and ki = 1, . . . ,Mi. Moreover, we can show that

∫
s

∫
si

sfs,si(s, si)p(mki |si)dsdsi = φi

e−u2
ki

2σ2
i − e

−
u2
ki+1
2σ2
i

 ,

∫
si

fsi(si)p(mki |si)dsi =
1

2

[
erf

(
uki+1√

2σi

)
− erf

(
uki√
2σi

)]
,

∫
si

∫
sj

fsi,si(si, sj)p(mki |si)p(mκj |sj)dsidsj =
0.5√
2π

∫ uκj+1
σj

uκj
σj[

erf
(
δij x̄j − ηijuki

)
− erf

(
δij x̄j − ηijuki+1

)]
e
−x̄2

j
2 dx̄j , (8)

where σ2
i = σ2

si + σ2
ni , φi =

σsσsiρsi√
2πσi

, x̄j =
xj
σj

, δij =
σsiσsj ρij

ψij
, ηij =

σj
ψij

and ψij =√
2
(
σ2
siσ

2
nj + σ2

niσ
2
j + σ2

siσ
2
sj

(
1− ρ2ij

))
.

The channel transition probabilities p
(
m′li |mki

)
depend on the

binary coding scheme used to encode the indices corresponding
to the quantization values mki , the modulation type used to
transmitted the encoded bits, channel gain gi and the statistics
of the receiver noise wi. For ideal communication channels from
the sensors to the FC, the channel transition probabilities become
p
(
m′li |mki

)
= δliki for li, ki = 1, . . . ,Mi and i = 1, . . . , N ,

where δliki is equal to one for li = ki and zero otherwise. There-
fore, for ideal channels, the coefficients ai, bi and cij , defined in



(6), reduce to

ai =

Mi∑
ki=1

mki

∫
s

∫
si

sfs,si(s, si)p
(
mki |si

)
dsdsi,

bi =

Mi∑
ki=1

(mki)
2
∫
si

fsi(si)p
(
mki |si

)
dsi,

cij =

Mi∑
ki=1

Mj∑
κj=1

mkimκj

∫
si

∫
sj

fsi,sj (si, sj)p
(
mki |si

)
p
(
mκj |sj

)
dsidsj . (9)

In the ensuing development, we focus on the case of non-ideal
channels. Nevertheless, the formulations also apply to the case
of ideal-channels. To determine vi, take derivative of Douq with
respect to vi and set it equal to zero, that is ∂Douq

∂vi
= 0, which

gives

vi =
ai −

∑N
i 6=j vjcij

bi
, i = 1, . . . , N. (10)

Substituting (10) in (5) we can write

Douq = σ2
s −

N∑
i=1

viai. (11)

Using matrix-vector notation, (10) and (11) can be written in a
more compact form as follows:

v = U−1a, (12)

Douq = σ2
s − aT

[
U−1

]T
a = σ2

s − aTU−1a, (13)

where v = [v1, . . . , vN ]T , a = [a1, . . . , aN ]T , U = C ◦ B
with C ◦ B denoting the Hadamard or Schur product of C and
B, [B]ij = 1 for i 6= j, [B]ij = bi for i = j, [C]ij = cij for i 6= j
and [C]ij = 1 for i = j.

The formulation in (4)-(13) is entirely general for the scalar
quantization scheme which covers both non-uniform and uni-
form scalar quantization processes. For given Mi the non-uniform
quantization function Qi is fully specified by the quantization
boundaries

{
uki
}Mi+1

ki=1
and the quantization values

{
mki

}Mi

ki=1
.

However, the uniform quantization functionQi is completely spec-
ified by the quantization interval ∆i. In this case, the quantization
boundaries can be written in terms of ∆i as follows:

uki = (2ki − 2−Mi)
∆i
2
, (14)

for ki = 2, . . . ,Mi with u1i and uMi+1 respectively denoting
the greatest lower-bound and the lowest upper-bound on xi. The
corresponding quantization values are given by

mki = (2ki − 1−Mi)
∆i
2
, (15)

for ki = 1, . . . ,Mi. Inspired by the simplicity of the uniform
quantization, henceforth we consider this scheme. Nevertheless,
even for this supposedly simple yet fundamental quantization
scheme we will see that the problem of joint quantization and
power allocation is still quite challenging to solve.

Since we do not assume any entropy coding, therefore, to
encode Mi indices corresponding to Mi quantization levels, we

need Li = log2Mi code bits. For joint quantization and power
allocation, we consider the following optimization problem:

min
Li,∆i,Pi, ∀i

Douq

s.t.
N∑
i=1

Pi ≤ Ptot,

Li ∈ Z+, ∆i, Pi ∈ R+, ∀i. (16)

The optimization problem is a nonlinear nonconvex mixed integer
programming problem which is hard to solve. However, for given
{Li}Ni=1 we can derive an iterative procedure based on the La-
grangian multipliers method to solve the problem for {∆i}Ni=1 and
{Pi}Ni=1 [8]. To this purpose, the associated Lagrangian function
can be written as follows:

f (∆i, Pi, λ, ξi, ηi) =Douq + λ

(
N∑
i=1

Pi − Ptot

)

−
N∑
i=1

(ξi∆i + ηiPi) , (17)

where λ, {ξi}Ni=1 and {ηi}Ni=1 are Lagrangian multipliers. The
corresponding Karush-Kuhn-Tucker (KKT) optimality conditions
can be written as

∂f

∂∆i
=− aTU−1åi + aTU−1ŮiU

−1a− åTi U−1a

− ξi = 0, (18)

∂f

∂Pi
=− aTU−1ăi + aTU−1ŬiU

−1a− ăTi U−1a

+ λ− ηi = 0, (19)

ξi∆i = 0, ξi ≥ 0, ∆i ≥ 0, (20)

λ

(
N∑
i=1

Pi − Ptot

)
= 0, λ ≥ 0,

N∑
i=1

Pi ≤ Ptot, (21)

ηiPi = 0, ηi ≥ 0, Pi ≥ 0. (22)

In (18), åi is a column vector with ith element as ∂ai
∂∆i

and all
other elements equal to zero, and Ůi is a matrix with the following
properties:

[
Ůi

]
jk

=


0 for j 6= i and k 6= i,
∂[U]jk
∂∆i

=
∂[C]jk
∂∆i

for j or k = i and j 6= k,
∂[U]jk
∂∆i

=
∂[B]jk
∂∆i

for j = k = i.

(23)

Similarly in (19), ăi is a column vector with ith element as ∂ai
∂Pi

and all other elements equal to zero, and Ŭi is a matrix with the
following properties:

[
Ŭi

]
jk

=


0 for j 6= i and k 6= i,
∂[U]jk
∂Pi

=
∂[C]jk
∂Pi

for j or k = i and j 6= k,
∂[U]jk
∂Pi

=
∂[B]jk
∂Pi

for j = k = i.

(24)

Eq. (18) through (24) show that a closed form analytical solution
for {∆i}Ni=1 and {Pi}Ni=1 is not possible. Therefore, we may
resort to numerical methods to solve this system of equations
iteratively. To this purpose, an iterative procedure can be used
wherein we solve for {∆i}Ni=1 for given {Pi}Ni=1 and vice versa
until there is no appreciable change in the distortion.



IV. NUMERICAL EXAMPLES AND DISCUSSION

The foregoing optimization problem is applicable to any kind of
binary coding scheme used to encode the quantization indices and
any digital modulation scheme used to transmit the quantization
bits. However, for the sake of illustration and simplicity, we focus
on the natural binary code and the BPSK modulation scheme.
Moreover, we assume that the power Pi of sensor i is equally
divided among its quantization bits Li. Consequently the bit-error
probability is given by εi = 1

2

(
1 − erf

(√
g2i Pi/2Liσ

2
wi

))
. In

this particular case, we can easily compute the channel transition
probabilities p

(
m′il|mik

)
from εi.

For N = 3 we assume σ2
s = σ2

si = σ2
wi = gi =

1, σ2
ni = 0.01 ∀i, (ρs1, ρs2, ρs3) = (0.9048, 0.0067, 0.2231)

and (ρ12, ρ13, ρ23) = (0.0067, 0.2019, 0.0054). Fig. 2 shows
the achieved MSE distortion versus Ptot for (L1, L2, L3) = 1,
(L1, L2, L3) = (2, 1, 1), (L1, L2, L3) = (3, 1, 2), (L1, L2, L3) =
(4, 2, 4) and (L1, L2, L3) = 6. Moreover, Fig. 3 and Fig. 4
respectively plots the power allocation among the sensors {Pi}Ni=1

and the variations of the quantization step-sizes {∆i}Ni=1 with Ptot
for (L1, L2, L3) = 1 and (L1, L2, L3) = (3, 1, 2). Note that in
the figures log(.) = log10(.). From Fig. 2 we can see that, to
minimize the distortion, it is better to quantize with less number
of bits at low power and vice-versa. The figure also shows that
at high power, with increasing the quantization bits, the achieved
distortion approaches the lower bound distortion D0. For given
quantization bits, Fig. 3 and Fig. 4 show that, compared to other
sensors, the sensor with better correlation properties quantizes with
small quantization step-size and transmits with more power. More-
over, at sufficiently large power Ptot, the step-size of each sensor
becomes constant and the power is equally divided among the
sensors. The figures also show that for each sensor the quantization
step-size decreases with increasing the number of quantization-
bits.

Fig. 2: Achieved reconstruction distortion.

V. CONCLUSIONS

In this work, we have proposed a design to jointly quantize the
sensor observations and allocate power to transmit the observations
to the FC with the goal to reconstruct the source with minimum
distortion. The design incorporates the spatial correlation, the
observation noises and the channels quality. The design does
not impose any statistical structure on the quantization noises.
Moreover, it does not make any simplifying assumption about
the contribution of the channel bit-errors to the distortion. In the
numerical examples we have seen that to minimize the distortion
sensors having better correlation properties compared to other sen-
sors quantize their observation with finer resolution and transmit
at higher power. Moreover, at sufficiently high power all sensors

Fig. 3: Allotted power.

Fig. 4: Quantization step-size.

transmit with equal power and for given quantization bits, the
quantization step-size becomes invariant with the power.
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