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ICTEAM Institute, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium

{Muhammad.Chaudhary, Luc.Vandendorpe}@uclouvain.be

Abstract— This paper considers power allocation problem in
wireless sensor networks where distributed sensors amplify and
forward their observations of a Gaussian random source to a
remote fusion center (FC) which reconstructs the underlying
source. The sensor networks are characterized by the availability
of limited energy. Motivated by this fact, we design a power
allocation scheme where our objective is to minimize the network
power consumption such that the reconstruction distortion does
not exceed a target value. The reconstruction distortion is quan-
tified based on linear minimum mean-squared error (LMMSE)
estimation rule. For power allocation, we propose a novel design
based on successive approximation of the distortion function.
The resulting algorithm turns out to be simple, computationally
efficient and exhibits good convergence properties. The design
is based on perfect knowledge of fading channel gains. We also
address the case where only estimates of the channel gains are
available. The simulation examples illustrate that the proposed
design holds considerable performance gain compared to a
uniform power allocation scheme.

I. INTRODUCTION

Wireless sensor networking is an emerging technology
which finds application in many fields including environment
and habitat monitoring, health care, automation and military
applications [1]. A wireless sensor network (WSN) consists
of spatially distributed sensors that cooperatively observe the
underlying physical phenomenon. Each sensor in the network
is powered by a battery which has limited capacity.

The batteries are assumed to be non-rechargeable and ir-
replaceable because the nodes may be deployed in a hostile
or inaccessible terrain. Our objective is to reconstruct the un-
derlying source so that the total transmit power be minimized
and the overall distortion (e.g. mean squared error) may not
exceed a set target value. We consider a system in star topology
where individual sensors transmit their noisy observations of a
common source, via some orthogonal multiple access scheme,
to a central processing unit called fusion center (FC), which
produces a global picture of the physical phenomenon based
on linear minimum mean squared error (LMMSE) estimation
rule.

The sensors have partial and correlated observations of a
common source. The correlation exists where sensors measure
data in the same geographical location, e.g. acoustic sensors
that are sensing a common event produce measurements that
are correlated. In addition, observation noise and communica-
tion channel may not have same conditions across the sensors.
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Therefore transmission of the observations based on a uniform
power allocation scheme is not an optimal strategy.

In a sensor network measuring a memoryless Gaussian
source uncoded transmission, i.e. amplify and forward (AF),
outperforms the separate coding and transmission over the
multiple-access channel [2], [3]. Motivated by this result,
Vuran et al. in [4] considered the estimation of a random
source with distributed sensors and suggested a sensor selec-
tion procedure that exploits spatial correlation and minimizes
the estimation error (based on LMMSE estimation criterion).
The work assumes ideal communication channels to the FC.
The sensor selection procedure suggests that sensors with high
correlation with the source and low cross-correlations should
be selected. The procedure does not take into account the fact
that even if a sensor has high correlation with the source and
low cross-correlations with the other sensors, it can still be a
bad selection in terms of energy-efficiency if its observation
noise is high and/or the communication channel to the FC is
bad. A recent related work appears in [5] which is based on
the same topological settings as [4]. Bahceci and Khandani in
[6] proposed a power allocation scheme for estimation where
each sensor observes a separate source albeit correlated. Ref.
[7] presented a power scheduling scheme for sensor networks
to detect a source based on a binary hypothesis testing rule
which exploits correlation in the observation noises at the
sensors. Other works like [8]- [12] proposed power scheduling
schemes for the sensor networks without considering the
spatial correlation.

In this contribution, we present a novel framework which
incorporates adaptive power allocation in the network by tak-
ing into account the spatial correlation and cross-correlations
of the observations, observation quality and communication
channel to the FC. The power allocations are jointly deter-
mined at the FC which are then conveyed to individual sensors
via feedback channels. Due to the correlation among sensor
observations, the design of power allocation scheme based on
the given optimization problem presents a unique challenge
because the LMMSE estimation error of the underlying source
contains nonlinearly coupled optimization variables. To this
end, we propose a novel design based on a successive ap-
proximation of the estimation distortion. The resulting power
allocation algorithm is simple, computationally efficient and
exhibits excellent convergence behavior. The proposed design
holds considerable performance gain compared to a uniform
power allocation scheme.

The gains of the communication channels from the sensors
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to the FC experience independent flat fading. The channel
from the sensor to the FC is usually estimated using some
training sequence. The receiver noise at the FC and the limited
available power means that the channel estimation always
incurs some estimation error. Consequently, the design of
power allocation schemes should also take into account the
channel estimation errors [13], [14]. Herein, first we design the
power allocation scheme assuming perfect knowledge of the
channel state information (CSI) and subsequently we extend
the design to the case of imperfect CSI. To the best of our
knowledge, in the present literature, there is no such work on
the design of power allocation for the sensor network under
consideration which jointly exploits the spatial correlation, the
observation quality, and the channel gains and their estimation
errors.

The rest of the paper is organized as follows. Section II
describes the setup of the sensor network and formulates
the power allocation problem. Section III and Section IV
respectively outlines solution to the optimization problem
for perfect and imperfect CSI cases. Section V evaluates
the performance of the power allocation designs with some
simulation examples. Finally Section VI concludes the work.

II. SYSTEM MODEL

Consider the system model shown in Fig. 1 in which N
spatially distributed sensors observe an unknown zero-mean
real Gaussian random source s ∼ N (0, σ2

s), and communicate
with the fusion center (FC) via orthogonal multiple access
channels. Each sensor has a partial and noisy observation of
the source, and sends an amplified version of it to the FC. The
FC collects the signals from all sensors and reconstructs the
source according to a given fidelity criterion, e.g. minimum
mean squared estimation error. The si ∼ N (0, σ2

si) and ni ∼
N (0, σ2

ni) respectively denote the partial observation of the
source s and the noise corrupting this observation such that
the noisy observation at sensor i is

xi(t) = si(t) + ni(t), i = 1, . . . , N, (1)

where ni, ∀i is independent across the sensors. The estimation
of the source is done on a sample by sample bases, and its
procedure is same for all samples. Therefore, in the subsequent
formulation we drop the time index for clarity. We assume that
the sensors amplify and forward their observations to the FC
via orthogonal channels where each channel experiences flat
fading independent over time and across sensors. The received
signal at FC from sensor i is

z̄i = hi
√
P ′ixi + w̄i = hi

√
P ′i (si + ni) + w̄i, ∀i, (2)

where
√
P ′i is a amplifying factor and w̄i ∼ CN (0, σ2

w̄i) is
receiver noise which is independent across the sensors and is
also independent of {ni}Ni=1. The channels {hi}Ni=1 between
the sensors and the FC experience independent flat fading with
hi ∼ CN (0, σ2

hi
),∀i and the gain factors {gi = |hi|}Ni=1 which

are Rayleigh distributed. Noting that hi = gie
−jθhj , we can

write from (2) as follows:

z̄ie
jθhj = gi

√
P ′i (si + ni) + w̄ie

jθhj ,

where the exponential term ejθhj can be merged into the
Gaussian variable w̄i without changing its statistical properties

due to the circular-symmetry property of w̄i [15]. Since the
underlying source s and the noisy observation xi = si+ni are
real-valued, therefore we only need to consider the component
of the noise w̄i which is in-phase with the observation xi, that
is

zi = gi
√
P ′i (si + ni) + wi, ∀i, (3)

where wi ∼ N (0, σ2
wi) and σ2

wi = 0.5σ2
w̄i .

Fig. 1: Block diagram of the system.

For the analysis in this work, we assume that the source s,
the observation si at sensor i, the observation sj at sensor j,
the observation noise ni at the sensor and the receiver noise
wi at the FC are jointly Gaussian across sensors (∀i and ∀j)
with zero mean and covariance (Λs,si,sj ,ni,wi ) specified by

Λ =


σ2
s σsσsiρsi σsσsjρsj 0 0

σsσsiρsi σ2
si σsiσsjρij 0 0

σsσsjρsj σsiσsjρij σ2
sj 0 0

0 0 0 σ2
ni 0

0 0 0 0 σ2
wi

. (4)

We also assume that the samples of s, si, ni and wi are
respectively independent in time.

In (4), the correlation coefficient ρsi represents the corre-
lation between s and si and the coefficient ρij denotes the
correlation between si and sj . The values of these correlation
coefficients may depend on the distance of the sensors w.r.t.
the position of the source s and w.r.t. each other respectively,
and can be characterized as follows

ρsi =
cov{S, Si}
σsσsi

= e
−
(
dsi/θ1

)θ2
, (5a)

ρij =
cov{Si, Sj}
σsiσsj

= e
−
(
dij/θ1

)θ2
, (5b)

which is a power exponential model for correlation [4], [16].
In (5), dsi is the distance between the source s and the sensor i,
dij is the distance between the sensors i and j. The parameter
θ1 > 0 controls how fast the correlation decays with distance
and is called range parameter. The other parameter θ2 ∈ (0, 2]
is called a smoothness or roughness parameter. Eq. (5) shows
that the correlation decays with distance with limiting values
of 1 and 0 as dsi(dij) → 0 and dsi(dij) → ∞ respectively.
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Based on the correlation model, therefore, we can say that the
FC in essence is interested to reconstruct the source s which
is located at a specific location by collecting observations
from the spatially distributed sensors where correlation of
the observations with the source and among the sensors
respectively depends on the spatial location of the sensors w.r.t.
the source and w.r.t. each other. Note that the location of the
source and the sensors can be in a two or three dimensional
space. We assume that the relative positions of the source and
the sensors are known and they do not change for at least one
estimation cycle.

The sensor networks are characterized by the availability of
limited power and often it is desired to achieve a specified
distortion by spending as little power as possible. The sensor
nodes are battery powered and the life of the nodes and
consequently of the network depends on the battery life.
Therefore, by minimizing the power consumption in each
estimation cycle, we may prolong the life of the network.
Moreover, minimizing the total power consumption corre-
sponds to minimizing the contribution to the phenomenon of
global warming [17]. To this purpose, we base our power
allocation scheme on the following optimization problem:

(Prob) : minimize the total power Ptot =
∑N
i=1 P

′
iσ

2
i

subject to D ≤ Dmax,

P ′i ≥ 0, ∀i, (6)

where σ2
i := σ2

si +σ
2
ni , D defines the reconstruction distortion

and Dmax is its target value. Note that Pi := P ′iσ
2
i denotes the

total transmit power of sensor i. In the sequel, first we char-
acterize the distortion D, which is measured as mean-squared
estimation error, and subsequently we solve the optimization
problem under the assumption of: (i) perfect knowledge of
the channel gains and (ii) estimates of the channel gains with
estimation errors.

III. POWER ALLOCATION WITH PERFECT CSI
In this section we assume that the channel state information

(CSI), that is the channel gains {hi}Ni=1, are perfectly known
at the FC. The case of imperfect CSI is considered in the next
section.

At the FC the optimal estimate ŝ of the source s in minimum
mean-squared error (MMSE) sense is equal to the mean of s
given the observations {zi}Ni=1, that is ŝ = E[s|zi, ∀i], where
E denotes the mathematical expectation. Under the jointly
Gaussian assumption of s and {zi}Ni=1, the conditional mean
estimator turns out to be linear and is called linear minimum
mean-squared error (LMMSE) estimator [18] which can be
written as follows:

ŝ = cTH (HCH + Cw)−1 z, (7)

and the associated mean-squared estimation distortion can be
written as follows:

D = σ2
s − cTH (HCH + Cw)−1 Hc,

= σ2
s − cTC−1c + cT (YC + I)−1 C−1c, (8)

where z = [z1, . . . , zN ]T , H = diag
(
g1

√
P ′1, . . . , gN

√
P ′N

)
,

C = E[(si + n)(si + n)T ], si = [s1, . . . , sN ]T ,

n = [n1, . . . , nN ]T , Cw = E[wwT ], w = [w1, . . . , wN ]T

and Y = HC−1
w H = diag

(
g21P

′
1

σ2
w1
, . . . ,

g2NP
′
N

σ2
wN

)
with [. . .]T

denoting the vector/matrix transpose operation [19].

Remark-1: The reconstruction distortion D is upper
bounded by the variance of the underlying source and is
lower bounded by the variances of the observation noises
and the spatial correlation and cross-correlation values as
given by

σ2
s − cTC−1c ≤ D ≤ σ2

s . (9)

The lower bound distortion is achieved when the
observations of the sensors are received at the FC via ideal
communication channels which can be verified by setting
g2iP

′
i

σ2
wi

= ∞, ∀i in (8). Note that it is not possible to achieve

distortion less than D0 := σ2
s − cTC−1c. Moreover, when

observation noise variances are {σ2
ni}

N
i=1 = 0 then the

lower bound distortion reduces to D0 = σ2
s − cTC−1

si c. The
achieved distortion is equal to the upper bound value (i.e.
D = σ2

s ) when either no signal is received at FC from the
sensors or the observations are uncorrelated with the source
s or both. Based on the Remark-1, following remark is in order

Remark-2: If Dmax < D0 then no matter how high the
transmit powers of the sensors are, we cannot achieve this
distortion and the given optimization problem is strictly
infeasible. Moreover, to achieve Dmax = D0 requires
{Pi}Ni=1 =∞ and consequently the problem is infeasible. On
the other hand, if Dmax ≥ σ2

s then the problem is trivial and
the distortion can be achieved by setting ŝ = E[s].

With the distortion function given in (8) We can show
that the optimization problem (6) is convex and to solve the
problem we can use Lagrangian multipliers technique [20].
The Lagrangian function can be written as

f(P ′i , λ, µi) = λ(D −Dmax) +
N∑
i=1

(
P ′iσ

2
i − µiP ′i

)
, (10)

where λ and {µi}Ni=1 are Lagrangian multipliers. Since the
problem is convex, therefore following Karush-Kuhn-Tucker
(KKT) conditions are sufficient to ensure the optimality of the
solution.

∂f

∂P ′i
= −λ

(
g2
i

σ2
wi

cT (YC + I)−1 JiC (YC + I)−1 C−1c
)

+ σ2
i − µi = 0, ∀i, (11)

λ (D −Dmax) = 0, λ ≥ 0, D ≤ Dmax, (12)

µiP
′
i = 0, µi ≥ 0, P ′i ≥ 0, ∀i, (13)

where Ji is a diagonal matrix with unity at (i,i)th place and all
other elements equal to zero. Unfortunately, to find the solution
for {P ′i}

N
i=1, we have to numerically solve (11)-(13). This

numerical approach may be computationally quite expensive
due to the matrix inversions involved in (11). Next we seek
answer to the following question. Can we do something
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different that is simpler and computationally efficient than the
numerical approach? In the sequel, in answering this question,
we propose a novel power allocation design and evaluate its
performance.

The LMMSE estimate of the source can be written as
ŝ =

∑N
i=1 aizi with ai’s denoting the LMMSE weighting

coefficients. The resultant mean-squared distortion D can be
written as follows:

D = E{s,si,ni,wi|gi,∀i}
[
(s− ŝ)2

]
,

= σ2
s +

N∑
i=1

a2
i

(
g2
i P
′
iσ

2
i + σ2

wi

)
− 2

N∑
i=1

aigi
√
P ′iσsσsiρsi

+
N∑
i=1

N∑
j 6=i

aiajgigj

√
P ′iP

′
jσsiσsjρij . (14)

By solving ∂D
∂ai

= 0 we get the following expression for the
LMMSE weighting coefficients:

ai = βiγi, ∀i, (15)

where βi and γi is respectively defined as

γi =
gi
√
P ′i

g2
i P
′
iσ

2
i + σ2

wi

, ∀i, (16)

βi = σsσsiρsi −
N∑
j 6=i

βjγjgj

√
P ′jσsiσsjρij , ∀i. (17)

With (16) and (17), the distortion in (14) simplifies to

D = σ2
s −

N∑
i=1

βiγigi
√
P ′iσsσsiρsi,

= σ2
s −

N∑
i=1

g2
i P
′
i

g2
i P
′
iσ

2
i + σ2

wi

βiσsσsiρsi. (18)

Eq. (17) forms a set of N coupled equations which
constitute the Wiener-Hopf equation for the LMMSE filter
coefficients (βi, ∀i). If we know the transmit powers {P ′i}Ni=1
then for given spatial covariance Λs,si,sj ,ni,wi and the channel
gains {gi}Ni=1, we can find the optimal coefficients {βi}Ni=1
by solving (17). To this end, it is convenient to employ the
matrix-vector notation as follows:

β = R−1c, (19)

where β = [β1, . . . , βN ]T , c = [σsσs1ρs1, . . . , σsσsNρsN ]T ,
[R](ij,i 6=j) = γjgj

√
P ′jσsiσsjρij and [R](ij,i=j) = 1. Note

that [R](i,j) denotes the (i,j)th element of R.
In the ensuing development, we outline an alternative solu-

tion to the problem of optimizing the transmit powers of the
sensors such that the achieved distortion does not exceed the
target value. Therein to derive an algorithm for the solution
of P ′i the underlying idea is to assume β as given. Based on
this assumption we derive an iterative algorithm for power
allocation which computes β using the values of {P ′n}Nn=1

from the previous iteration. This successive approximation
(SA) of the distortion function in (18) makes the solution of the
power allocation problem simple and easy to compute. Note

that the resulting design for power allocation can be viewed
as a joint optimization of {βi}Ni=1 and {P ′i}Ni=1.

We use the outlined successive-approximation principle to
solve the optimization problem (6) based on the distortion
function D in (18). For given βi > 0, it is easy to verify
that the distortion constraint is a convex function of the op-
timization variables P ′i , i = 1, . . . , N and since the objective
function is linear, therefore the given optimization problem
is convex. To solve the problem, we adopt the Lagrangian
multipliers technique where KKT conditions are sufficient for
optimality of the solution. The associated Lagrangian function
can be written as follows:

f(P ′i , ν, µi) = ν(D −Dmax) +
N∑
i=1

(
P ′iσ

2
i − µiP ′i

)
,

where ν and {µi}Ni=1 are Lagrangian multipliers. The KKT
conditions are

∂f

∂P ′i
= −ν

σ2
wig

2
i βiσsσsiρsi(

g2
i P
′
iσ

2
i + σ2

wi

)2 + σ2
i − µi = 0, ∀i, (20)

ν(D −Dmax) = 0, ν ≥ 0, D ≤ Dmax, (21)

µiP
′
i = 0, ≥ 0, P ′i ≥ 0, ∀i. (22)

For sensor i to be active Pi > 0, in which case solving (20)
and (22) we get

P ′i =
1

ζiσ2
i

(√
νζiβiσsσsiρsi

σ2
i

− 1

)+

, ∀i, (23)

where ζi := g2i
σ2
wi

defines channel SNR for sensor i and (x)+ =
max(x, 0). From (23), we can make the following observations
about the power allocation policy for the sensors.

1) With respect to the channel SNR, in the range ζi ≤
ζ

(o)
i , P ′i increases with increasing ζi and in the range
ζi > ζ

(o)
i , P ′i decreases with increasing ζi, where ζ(o)

i =
4νβiσsσsiρsi

σ2
i

.
2) Considering the observation noise variance, sensor i gets

more power if σ2
ni (i.e. σ2

i ) is less and vice versa.
3) Better correlation with the source results in higher power

assigned to the sensor and vice versa. For example, if
ρsi → 0 then P ′i → 0.

These observations show that the final power allocation policy
jointly depends on the correlation values, observation noise
variances and the channel SNRs and depending on the values
of these parameters some of the sensors may be switched-off.
Note that for a sensor i to be active following condition

ζiβiσsiρsi
σ2
i

>
1
νσs

, (24)

must hold, otherwise it is switched-off. Let L defines the
index-set of the active sensors as follows:

L =
{
l
∣∣∣ζlβlσslρsl

σ2
l

>
1
νσs

}
. (25)

Since the given problem is convex, therefore the minimum
of the objective function occurs at the distortion constraint
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boundary, which means that the constraint has to be tight, that
is D = Dmax giving

ν =

 ∑
l∈L

√
βlσsσsl
ζlσ2

l

Dmax − σ2
s +

∑
l∈L

βlσsσslρsl
σ2
l

2

. (26)

The outlined solution for power allocation is similar to the
waterfilling-like solution [9].

Based on (19) and (23)-(26), to find power allocation for the
sensors, an iteratively algorithm can be proposed as outlined
under “Algorithm 1”. The algorithm successively optimizes
{P ′i}

N
i=1 and {βi}Ni=1 while minimizing the total power subject

to the distortion constraint. If during iterations any sensor
does not fulfill the condition in (24), it is switched off and
the algorithm continues with the remaining sensors until the
convergence criterion is fulfilled. Note that for given {P ′i}

N
i=1,

optimal {βi}Ni=1 can be computed by the simple equation
(19) and for given {βi}Ni=1, optimal {P ′i}

N
i=1 is given by the

waterfilling-like solution (23)-(26).

Algorithm 1

1: Initialize P ′[0]
i for i = 1, . . . , N

2: Calculate β[0]
i for i = 1, . . . , N

3: Set κ = 0
4: while

(∣∣P [κ]
tot − P

[κ−1]
tot

∣∣ ≥ ε) do . where κ denotes the
while loop iteration index

5: κ = κ+ 1
6: For i = 1, . . . , N determine transmit power as follows:
7: if Condition in (24) is true then
8: Determine P ′[κ]

i from (23)
9: else

10: P
′[κ]
i = 0

11: end if
12: For i = 1, . . . , N update β[κ]

i from (19)
13: Calculate P [κ]

tot

14: end while

Regarding the convergence properties of the algorithm con-
sider the following points. Since in each iteration we are min-
imizing a convex function over the convex-set of the transmit
powers {P ′i |D ≤ Dmax and P ′i ≥ 0, i = 1, . . . , N}, therefore
the optimality of the transmit powers {P ′i}

N
i=1 in each ap-

proximation (for given {βi}Ni=1) combined with the optimality
of the {βi}Ni=1 for given {P ′i}

N
i=1 mean that the algorithm

achieves monotonic decrease in Ptot and consequently it does
converge to a unique minimum point. Moreover, the algorithm
may achieve convergence in as few as two or three iterations.
In Section V, we illustrate the convergence properties of the
algorithm with several simulation examples. It is quite inter-
esting that the algorithm exhibits such convergence properties
which illustrates that the proposed successive approximation
strategy works quite well. Finally the ease of computation and
simplicity of the design based on the successive approximation
principle can be appreciated from the simple and concise
structure of (23)-(26).

IV. POWER ALLOCATION WITH IMPERFECT CSI

Heretofore, we have assumed perfect knowledge of the
channel gains {hi}Ni=1. However, in practice, we have es-
timates {ĥi}Ni=1 of the actual channel gains. One way to
estimate the channel is by a training sequence whereby each
sensor transmits a known sequence of data symbols called
pilots. Then based on the received data, the FC estimates the
channel. Let ti denotes the pilot symbol transmitted by sensor
i in the channel estimation phase. The corresponding received
signal is ri = hiti + w̄i and based on which the MMSE
estimate ĥi of hi is

ĥi =
E{hi,w̄i}[hir∗i ]
E{hi,w̄i}[|ri|2]

ri =
σ2
hi
t∗i

σ2
hi
|ti|2 + σ2

w̄i

ri, (27)

where t∗i denotes complex conjugate of ti. The variance of the
estimation error ∆h̄i := hi − ĥi is

δ̄2
i = E{hi,w̄i}

[
|hi − ĥi|2

]
=

σ2
hi
σ2
w̄i

σ2
w̄i + σ2

hi
|ti|2

, (28)

wherein |ti|2 denotes the power of the transmitted pilot. Note
that the variance of channel estimation error is finite for finite
|ti|2 and σ2

w̄i . The actual channel can be represented as a sum
of the estimate and the estimation error, that is

hi = ĥi + ∆h̄i, (29)

where ∆h̄i ∼ CN (0, δ̄2
i ).

One way to design the power-scheduling scheme is by
replacing hi by ĥi and gi by ĝi in the formulation in the
foregoing section. This constitutes the naive-approach because
it ignores the error in the channel estimate. An alternative
design originates by substituting (29) in (2) as follows:

z̄i = ĥi
√
P ′i (si + ni) +

√
P ′i (si + ni) ∆h̄i + w̄i︸ ︷︷ ︸

:=ūi

,

in which ūi can be viewed as a total receiver noise with
E{si,ni,w̄i,∆h̄i}[ūi] = 0, E{si,ni,w̄i,∆h̄i}[|ūi|

2] = P ′i (σ
2
si +

σ2
ni)δ̄

2
i +σ2

w̄i and E{si,sj ,ni,nj ,w̄i,w̄j ,∆h̄i,∆h̄j}[ūiū
∗
j ] = 0, ∀i 6=

j. Noting that ĥi = ĝie
jθĥi , we can write

z̄ie
−jθĥi = ĝi

√
P ′i (si + ni) + ūie

−jθĥi ,

where the exponential term e
−jθĥi can be absorbed into ūi,

i.e. into the Gaussian variables ∆h̄i and w̄i without changing
their statistical properties - thanks to their circular symmetry.
Since the underlying source s and the observation si +ni are
real-valued, as a consequence only part of the noise ūi term
in-phase with the sensor observation is relevant for estimation
of the source s . Therefore, we can write the received signal
from sensor i as

zi = ĝi
√
P ′i (si + ni) + ui, (30)

where ui = Re {ūi} =
√
P ′i (si + ni) ∆hi + wi, ∆hi ∼

N (0, δ2
i ) and wi ∼ N (0, σ2

wi). Following a procedure similar
to Section III, the mean-squared reconstruction distortion of
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the estimate ŝ =
∑N
i=1 aizi with respect to s can be written

as follows:

D̃ = E{s,si,ni,wi,∆hi,|ĝi,∀i}
[
(s− ŝ)2

]
,

= σ2
s −

N∑
i=1

βiγiĝi
√
P ′iσsσsiρsi, (31)

where

ai = βiγi,

βi = σsσsiρsi −
N∑
j 6=i

βjγj ĝj

√
P ′jσsiσsjρij ,

γi =
ĝi
√
P ′i

ĝ2
i P
′
iσ

2
i + P ′iσ

2
i δ

2
i + σ2

wi

, ∀i. (32)

The solution to the optimization problem in (6) with the
objective to minimize the total network power subject to the
constraint on the distortion D̃ can be obtained by using the
method of Lagrangian multipliers. The resulting solution is
outlined as follows.

1) The power allotted to sensor k for k = 1 . . . , N is

P ′k =
1(

1 + δ2k
ĝ2k

)
ζ̂kσ2

k

√νζ̂kβkσsσskρsk
σ2
k

− 1

+

, (33)

where ζ̂k := ĝ2k
σ2
wi

.
2) For sensor k to have P ′k > 0 following condition must

hold

ζ̂kβkσskρsk
σ2
k

>
1
νσs

, (34)

otherwise P ′k = 0.
3) The index-set of active sensors is

L =

{
l
∣∣∣ ζ̂lβlσslρsl

σ2
l

>
1
νσs

}
. (35)

4) The Lagrangian multiplier ν is determined by satisfying
the distortion constraint with equality and is given by

ν =


∑
k∈L

√
βkσsσskρsk(
1+

δ2
k
ĝ2
k

)2

ζ̂kσ2
k

Dmax − σ2
s +

∑
k∈L

βkσsσskρsk(
1+

δ2
k
ĝ2
k

)
σ2
k


2

. (36)

Based on (33)-(36), power allocation for the sensors can
be obtained using the procedure outlined under Algorithm 1.
Note that the convergence properties of the algorithm with
perfect CSI also applies to the imperfect CSI case.

Remark-3: We can observe that as δ2
k → 0 then ĝk →

gk for k = 1, . . . , N and the power allocation design with
imperfect CSI (33)-(36) converges to the design with perfect
CSI (23)-(26) respectively.

V. PERFORMANCE EVALUATION AND DISCUSSION

This section corroborates the analytical findings with some
simulation examples. In order to show the effectiveness of
our design, we compare its performance with a uniform
power allocation based design. In the figures, the designs are
respectively denoted as APA (Adaptive Power Allocation) and
UPA (Uniform Power Allocation). Moreover, for the UPA
design, we have {Pi}Ni=1 = Pu. In the figures, we assume
log(.) = log10(.).

We consider two sensor networks respectively comprising
N = 3 and N = 500 sensors that are uniformly distributed
in a 100 × 100 planar region with the source s at its center.
Fig. 2 plots the total power Ptot =

∑N
i=1 Pi consumed by the

APA design as a percentage of the power consumed by the
UPA design to achieve the given target distortion Dmax. The
power Ptot is averaged over 104 realizations of the sensors
deployment. To ensure the feasibility of the problem, i.e. σ2

s <
Dmax < D0, and to enable a fair comparison, we set the target
distortion according to the following rule

Dmax(m) = σ2
s −

m

M

{
σ2
s − (1 + ε)D0

}
, 1 ≤ m ≤M, (37)

in each deployment of the sensors. In (37), M is an integer
greater than or equal to 1 and ε ∈ (0, 1). The value of ε should
be sufficiently small such that (1 + ε)D0 < σ2

s .
The figure shows that our proposed design outperforms

the UPA scheme and the APA design may require transmit
power as little as 0.01 percent of that needed by the UPA
scheme to achieve the target distortion. For given θ1, we
can observe that the performance gap between the APA and
UPA designs increases with increasing the number of sensors.
Moreover, we can see that increasing the value of θ1 for given
N , the performance gap between the APA and UPA scheme
decreases. This is because, for given deployment, the spatial
correlation of the sensors with the source (and with each other)
improves with increasing θ1 [c.f. (5)] and consequently the
total power consumed by the APA design approaches to the
power consumed by the UPA design.

Next for the sake of illustration, we focus on the net-
work with three sensors, i.e. N = 3, and we consider
the following example: (dX1 , dX2 , dX3) = (−0.3, 0, 0.8)
and (dY1 , dY2 , dY3) = (0, 1.6, 0), where (dXi , dYi) specifies
position of sensor i with respect to the origin in a XY -
plane. Note that we can view this example as a specific
realization of the deployment of the sensors. Assuming the
source to be at the origin of the XY -plane and θ1 =
θ2 = 1. From (5) we obtain the following spatial corre-
lation values: (ρs1 , ρs2 , ρs3) = (0.7408, 0.2019, 0.4493) and
(ρ12, ρ13, ρ23) = (0.1963, 0.3329, 0.1671). The simulations
in the sequel are based on this example. We have taken the
example for purely illustrative purpose.

The simulation examples in the sequel assume {σ2
ni}

N
i=1 =

0.01, {h2
i }Ni=1 = 1 and {σ2

wi}
N
i=1 = 10 unless stated oth-

erwise. The spatial correlation values and the observation
noise variances lower bounds the reconstruction distortion at
D0 = 0.4086. The target distortion Dmax in the subsequent
simulation examples cannot be below this value, otherwise the
optimization problem will be strictly infeasible [c.f. Remark-
2].
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Fig. 2: ε = 10−5, θ2 = 1,
(
σ2
n1
, hi, σ

2
wi

)N
i=1

= (0.01, 1, 10),
and (C1) θ1 = 1, (C2) θ1 = 10, (C3) θ1 = 100 and (C4)
θ1 = 1000.

Fig. 3 illustrates the power allotted to the sensors by the
APA and UPA schemes. We can see that, to achieve the
target distortion, the UPA scheme gives equal power to all
sensors regardless of their correlation structure and thereby
wasting power whereas the APA design allocates more power
to the sensors with good correlation properties and vice versa.
Moreover, depending on the target distortion, some of the
sensors may be switched off. The corresponding comparison
of the total powers of the two schemes is given in Fig. 4.
The figure shows that, to achieve the target distortion, the
APA design may require as little as fifty-percent of the power
needed by the UPA scheme. Note that the difference in the
powers of the two schemes depends on the correlation structure
and the target distortion. Nevertheless, the proposed design
substantially outperforms the UPA scheme in the required total
power to achieve the given distortion.

Fig. 5 illustrates the convergence behavior of the Algorithm
1 for different values of Dmax. In each case, the algorithm
is initialized with uniform power allocation such that the
distortion is equal to Dmax. From the figure we can see that
there is a monotonic decreases in Ptot and in two iterations it
approaches fairly close to the minimum value. Nevertheless,
after the third or forth iterations there is no appreciable change
in the power.

Fig. 6 compares the total power required by the APA design
as a percentage of the UPA scheme when we have: (i) perfect
CSI, i.e.

{
δ2
i

}
= δ2 = 0 and (ii) the estimates of the channels

with estimation error variance δ2 = 0.01 and δ2 = 0.1. In
the simulations, we assume that the communication channels
{hi}Ni=1 from the sensors to the FC undergo independent
Rayleigh fading with

{
σ2
hi

}N
i=1

= 1. Moreover, we assume

that
{
σ2
ni , σ

2
wi

}N
i=1

= (0.01, 10). The total power Ptot is
averaged over 5×106 independent realizations of the channels
for the APA and UPA designs respectively. The figure shows
that the APA design outperforms the UPA scheme in terms
of power efficiency for both perfect and imperfect CSI cases.

Fig. 3: Power Allocation.

Fig. 4: Power efficiency comparison.

Fig. 5: Convergence behavior of Algorithm 1.
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Moreover, the performance gap decreases with increasing the
variance of the channel errors.

Fig. 6: Comparison of perfect and imperfect CSI.

VI. CONCLUSIONS

We have developed an adaptive power allocation design to
minimize the network power consumption such that the fidelity
criterion given by the maximum tolerable estimation distortion
is satisfied. The proposed design simultaneously exploits the
spatial correlation, the observation quality and the communica-
tion channel gains by incorporating these parameters in (quasi-
)analytical expressions. Regarding knowledge of the channel
state information, we considered two cases: perfect knowledge
of the instantaneous channel gains is available or the estimates
of the gains with estimation errors are known. The proposed
design is novel and the associated algorithm is simple and
easy to compute, and exhibits good convergence properties.
We demonstrated the effectiveness of our proposed design with
a few examples and we showed that the design outperforms
the uniform power allocation scheme. The performance gain
may be large for a relatively large sensor network with high
heterogeneity, across the sensors, in the spatial correlation, the
observation quality and the channel gains.
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