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ABSTRACT

Automatic contour detection in SAR images is a difficult problem due to the presence of speckle. Several detectors
exploiting the statistics of speckle in uniform regions have been already presented in literature. However, these were
mainly applied to multi-look low-resolution imagery. This paper describes two new CFAR contour detectors for
high-resolution single-look polarimetric SAR images. They are based on multi-variate statistical hypothesis tests.
Failing of the test indicates the presence of an edge. A test for difference in means on log-intensity images and
difference in variance on complex (SLC) images are used. Both tests take into account the interchannel covariance
matrix which makes them a powerful tool for contour detection in multi-channel SAR images. Spatial correlation
jeopardizes the CFAR character of the detectors. This problem is often neglected. In this paper its influence on the
detectors is studied and eliminated. The localisation of detected edges is improved using a directional morphological
filter. Different methods to fuse the results of the two detectors are explored and compared. Results obtained on
a polarimetric L-band E-SAR image are presented. Most contours are well detected. Narrow lines on a uniform
background remain undetected. Although the detector was developed to detect edges only between uniform areas,
it also detects edges between textured and uniform areas.
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1. INTRODUCTION

The presented work is part of a project that aims at automatically register SAR images with other types of images
for remote sensing applications. The general idea is to use a map as an aid for the registration. On a map of the
same region as the images the main objects (roads, forests, villages, etc.) are detected automatically. Then, for
each type of image, some of the objects found on the map are also detected. Matching the objects provides a first
registration. The purpose of the edge detectors presented in this article is thus to automatically find edges between
large uniform regions that are likely to be present on maps.

Edge detectors that work well in optical images fail in SAR images. This is due to the particular properties of
the speckle in SAR images. The most efficient edge detectors for optical images use a gradient-based method, mostly
combined with a smoothening filter. These are well adapted for images with additive noise and a high signal-to-noise
ratio (SNR). However, the speckle in SAR has the characteristics of a multiplicative noise (in intensity images) with
a very low signal-to-noise ratio. This makes pixel-wise methods using a simple filtering mask inappropriate. Even
more elaborate local methods using a combination of an edge detection filter with some smoothening!? give very
noisy results.

The solution that is commonly adopted is to take into account larger neighbourhoods of each pixel to decide
whether an edge passes through that pixel. This is mostly done using the following principle (Fig. 1): the images
are scanned by a set of two adjacent rectangular windows and in each pixel local measurements, which are a function
of statistical differences between the pixels in both windows, are used as an indication that the edge between the
two windows actually corresponds to an edge in the image. This gives an answer for one possible edge orientation.
The set of rectangles is rotated around the current pixel to verify the presence of an edge along other orientations.
Mostly 2, 4 or 8 different orientations are tested.

The existing methods were mostly applied on multi-look intensity images and differ by the comparison criterion
that is used.

Due to the multiplicative character of the speckle, using the difference in arithmetic means as a comparison
criterion between the two rectangles yields a detector of which the probability of false alarms increases with the
radar reflectivity of the regions.> This is a very undesirable property because it means that, in order to obtain a
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Figure 1. General principle of contour detector

constant false alarm rate (CFAR) detector the threshold used for the detector should be a function of the average
intensity around a given pixel. This is very hard to implement. Several solutions are presented in literature. The
first is to use the arithmetic average of the log-intensity image. Another possibility is to normalise the difference in
means. This can be done by dividing either by the sum of average intensities in both windows or by the empirical
standard deviation of both windows These three solutions do provide a CFAR detector.

The most widely used criterion is the ratio of average intensities. A detector based on this was proposed by the
research teams of Touzi® and Bovik.* The ratio of average intensities is the maximum likelihood estimation of the
ratio of the radar reflectivities in the two rectangles for a single-band SAR image. In that sense the ratio detector
is said to be optimal. In®® the ratio detector has been adapted to detect narrow linear features (roads, rivers,...) in
SAR images.

Oliver”® proposed a hypothesis test as log-likelihood difference to compare the two rectangles in single-look
intensity images .

In the current article two new edge detectors for high-resolution polarimetric SAR images are proposed. They are
both based on multi-variate hypothesis tests. Contrary to most methods found in literature, we will be working on
single-look images instead of multi-look images. Single-look images provide the highest resolution but the maximum
strength of the speckle makes the visual interpretation as well as automatic analysis of such images particularly
difficult.

Most publications on edge detection in SAR images neglect the problem of spatial correlation and its effect on
the developed edge detectors. Correlated speckle in general makes the statistical properties of a detector deviate
from the theoretical prediction. When dealing with edge detection in multi-look intensity images, the problem can
be circumvented by introducing the notion of equivalent number of looks.% Fjortoft?10 solves the problem of spatial
correlation by applying a spatial whitening filter as a pre-processing step for edge detection in SLC images.

In the current article the effect of spatial correlation on the two developed detectors is studied. As the developed
methods focus on the detection of edges between large uniform regions in high-resolution images it is possible to
reduce the effect of spatial correlation by random sub-sampling within the scanning rectangles. For each detector
the optimal sampling ratio is determined.

2. TEST IMAGE AND EVALUATION PROCEDURE

The algorithm was tested on an L-Band E-SAR image of the Oberpfaffenhofen area near Munich in Germany. In
this article results are presented on a small part of the image, shown in Fig. 2.

In the qualitative evaluation results are shown on the test image. For a more quantitative evaluation the Receiver
Operator Curves (ROC) were determined. A ROC is a figure that shows the probability of detection Py versus the
probability of false alarms Py,. The ROC curve is generated by varying the threshold of the detector and each time
determining Py and Py,. The different detectors give relatively wide responses (due to the width of the scanning
windows). P; and Py, were therefore defined as follows:



Figure 2. Part of SAR image used as test region for edge detectors

e Probability of Detection (Py): For a given threshold this is based on the number of pixels in the detector’s
result image for which the value is above the threshold and the position is within a given distance of the edge.
We follow the edges and at each pixel of the edge determine if a detected pixel is close enough. Once such a
pixel is found it is set to zero, thus avoiding to count a given pixel twice. The Py is then defined as the number
of detections along the true edge divided by the number of pixels of the edge

e Probability of False Alarms (Py,): This is defined as the number of pixels above a given threshold that are not
within a given distance (D > A,,,;) from a true edge divided by the total number of pixels in the image that
are not near an edge.

Please note that the ROC curves depend on the image that is used. It is thus not possible to compare the
detectors presented here to other detectors presented in literature on the basis of these ROC curves. When simulated
images are used in the evaluation, the contrast-level can be fixed but, as we are dealing with multi-variate data,
results will still depend on spatial correlation as well as inter-channel correlation. Comparison of algorithms based
on a comparison of results published in articles is therefore very hard.

3. SOME STATISTICAL PROPERTIES OF SAR IMAGES
3.1. Introduction

The primary geophysical quantity determining the appearance of SAR data is the complex radar reflectivity of
the imaged surface. This radar reflectivity expresses the fact that, when an electromagnetic wave scatters from a
given position of the earth’s surface, the physical properties of the terrain cause changes in both the phase and the
amplitude of the wave. In distributed targets each resolution cell of the imaging system contains a large number of
discrete scatterers. As the wave interacts with the target, each individual scatterer thus contributes a backscattered
wave with a phase and amplitude change. The resolution of the SAR system is typically many times the wavelength
of the radar, hence, even if all elementary scatterers were identical, they would still produce a very different phase
in the incident wave as the waves scattered from them have very different path lengths. As the value of a pixel in
the image is determined by the coherent sum of all the scattered waves within a resolution cell, this results in a
noise-like characteristic that is called speckle. Speckle is found in any image produced by a coherent imaging system
(e.g. laser, sonar, ultrasound, radar). The statistical properties of the speckle are very important as they can be
used to develop detectors that are well-adapted to SAR images. Another important aspect to be taken into account
when developing detection or segmentation methods is correlation: spatial correlation within one image as well as
inter-channel correlation. These three topics are briefly discussed in the next paragraphs.



3.2. Distribution of speckle in uniform region of a single-look SAR image

In single-polarisation Single Look Complex (SLC) images the speckle in non-textured uniform regions follows a zero-
mean normal distribution and the difference between different uniform regions is characterised by a difference in
variance between these distributions.!’ One of the edge detectors presented in this paper is based on this property.

From the complex image other types of images can be determined. Some properties of the statistical distribution
of speckle in uniform regions within the different types of commonly used SAR images are presented in table 1. In
the log-intensity image the variance in a uniform region is constant, i.e. it is not dependent on the radar reflectivity.
Differences in radar reflectivity appear as differences in means. Hence the idea to use a test for difference of means
in the log-intensity image for the second edge detector.

Table 1. Speckle distribution in uniform regions of single-look SAR images

Image Type Definition Distribution Remarks
Real, Imaginary Tp, T; Normal ZE€ro-mean
Amplitude A= /22 +1? Rayleigh

Intensity I=A2 Exponential u=0c
Log-Intensity LI =log(I) | Fisher-Tippet | o = ¢

3.3. Spatial correlation

The pixel spacing in SAR systems is always smaller than the resolution cell. This leads to a correlation between
neighbouring pixels in the SAR image. Furthermore, as the SAR processing in range and azimuth direction is
different, this spatial correlation function is not circular symmetrical as is often the case for optical sensors (visible
or infrared). The spatial correlation influences the validity of models used to construct edge detectors. The problem
is often neglected. Some authors have incorporated this into the model, leading to very complex methods. This is
necessary for low-resolution images. However, when dealing with high-resolution images, the problem can be easily
circumvented by sub-sampling the image as long as the number of remaining independent samples is still sufficient
for the used segmentation or edge detection method.!!

3.4. Correlation between the different polarisations

In many articles the correlation between co- and cross-polar polarisations ( i.e. HH/HV and VV/HV) is supposed
to be zero. This is only the case for objects with azimuthal symmetry. It is thus true in most vegetated areas but
not in man-made objects (villages). On the images we received, i.e. L-band images from a region around an airfield,
we determined the inter-channel (between the different polarisations) correlation for several types of land-cover as
well as for the runway of the airfield. For each type of land-cover the average over a number of examples was taken.
Results are presented in table 2.

4. THE PRE-PROCESSING STEP

The distribution of speckle in uniform regions of the polarimetric SLC images follows a zero-mean multi-variate
normal distribution. This can be used to locate homogeneous regions in the SAR image, thus limiting the search
space for the contour detector. If samples are multi-variate normally distributed, the square of the Mahalanobis
distance from the samples to the sample mean follows a x? distribution with degrees of freedom equal to the number
of variables.!? This can be checked using a x?-test. We used the test with a 10 % significance level instead of the
usual 5 or 1 % levels as we wish to avoid tagging a non-homogeneous region as being homogeneous.

5. THE EDGE DETECTOR BASED ON A DIFFERENCE OF VARIANCE

The contour detector problem is transformed into a multi-variate hypothesis test, the null-hypothesis being that the
variance is the same in the two rectangular scanning windows. The statistical test that was used to measure the
probability that two sets of variances differ is the Levene test.!2



Table 2. Correlation coefficients between polarimetric components for various types of land-cover

Type HH OV VV
Village | OO | 1.0 0.362  0.809
HV 1.0 0.389
\aY 1.0
Forest | OO | 1.0 0.136  0.186
HV 1.0 0.136
\aY 1.0
Runway | OO | 1.0 0.057  0.380
HV 1.0 0.129
\aY 1.0
Grass | HH | 1.0 0.0449 0.577
HV 1.0 0.0448
\aY 1.0
Fields | OO | 1.0 0.032  0.588
HV 1.0 0.0144
\aY 1.0

The samples from the two adjacent windows are transformed in absolute deviations of sample means. In the case
of a single-look complex polarimetric image with complex data of the type £ z#V V'V this results in:

ik o)
Re(mikv — Ty )| (1)
Im(z8V —z8Vy | |

in which i is the index of the sample and k the index of the rectangular window. The question whether two samples
display significantly different amounts of variance is then transformed into a question of whether the transformed
values show a significantly different mean.!'? This can then be tested using a Hotellings T2 test.!?

The Hotellings T? statistic is defined as:

_ ninz(Ly — L2)'C~1(Ly — Ly)
n1 + N2

T2

; 2)

where n; and ny are the number of samples used in both rectangles, Ly is the average L vector in window k and
C is the pooled covariance matrix defined as:

(Il]_ — 1)C1 + (n2 — 1)C2
n; +ngp — 2 )

C=

3)

The significance of T? is determined by using the fact that in the null-hypothesis of equal population averages
the transformed statistic:

_ (m +ng —p— l)T2
(n1+n2—2)p

(4)

follows an F distribution with degrees of freedom p and (n; + no — p — 1), where p is the number of variables
(i.e. 6 in our case). If we calculate F from the data, we can thus directly associate the probability that the two
variances are different to it. However, if the F-statistic (4) is calculated using all pixels in the rectangular windows,



the experimentally found 5 % threshold, for a uniform region, is higher than the theoretically predicted one. This
was shown to be due to the spatial correlation of the samples within the scanning windows.!* In order to check
this, we constructed a set of 15 simulated images with a zero-mean multi-variate normal distribution, without spatial
correlation but with inter-channel correlations and variances that are comparable to those actually found in some
uniform regions in the SAR image.

For these test images we have calculated the 5 % threshold as a function of sampling ratio for sampling with and
without replacement. The results are shown in Fig. 3(left). When less than 10 % of the points are considered, both
sampling schemes are nearly equivalent and their values correspond to the theoretical threshold. However, as the
number of selected points increases, the threshold for sampling with replacement increases while the one for sampling
without replacement slightly decreases. In fact the behaviour for the sampling without replacement corresponds to
the theoretical behaviour of the threshold as shown in Fig. 3. The figure shows the average thresholds T over the
15 windows for both sampling schemes as well as T + o7 (dotted lines). The fact that in the case of sampling with
replacement the threshold increases can be explained by the fact that the replacement itself introduces a correlation
between the samples.
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Figure 3. 5% Threshold vs. sampling ratio for sampling with and without replacement in simulated images without
spatial correlation (left) and for sampling without replacement in uniform regions of the SLC SAR image (right)

We have thus established that sub-sampling without replacement reduces the effect of correlation. Now we would

like to determine what is the maximum sampling ratio allowed to have results that are useful. Two things need to
be checked:

e Do the data indeed follow an F-distribution ?

e Is it possible to assign a constant false alarm threshold independent of the average radar reflectivity of the
uniform region?

The answer to these two questions was found by studying the behaviour of the F-statistic defined by equation 4 in
15 uniform regions of the SAR image corresponding to different radar reflectivities. For each region an F-distribution
was fitted through the data. A y2-test was used to compare the “experimental” F-distribution with the theoretical
one. For sampling ratios below 20 % the two distributions are equal (with a significance level of 5 %). At 30 %
sampling rate the distributions are only equal if the rectangles are horizontal (as the largest spatial correlation was
found to be in the vertical direction, the degradation of the model appears faster using vertical windows). So,
sampling should be lower than 30 %.

To answer the second question, the 5 % threshold level was determined experimentally from the histograms of the
F-statistic in the 15 uniform regions as a function of sampling rate. The average and standard deviation over the 15
regions was determined. Results are shown in Fig. 3(right) for both horizontal and vertical windows. From the figure
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Figure 4. False alarm probability vs. threshold for experimental and theoretical F-distribution

it appears that it is only possible to assign a global threshold corresponding to a given probability of false alarms
for all directions when 10 % or less of the points within the window are used to calculate the statistic. Otherwise a
threshold has to be set for each direction separately and the method is not valid above 20 % sampling. The detector
will thus sample at 10 % and the threshold will be derived from the average experimental F-distribution (see Fig.
4). As we are only interested in finding contours of large regions, large scanning rectangles can be used. We used
51 x 11 rectangular windows. For such windows, a 10 % sampling rate still provides enough independent samples for
the method to be valid.

6. THE EDGE DETECTOR BASED ON A DIFFERENCE IN MEANS

The idea is to apply a multi-variate test for difference in means between two populations. The hottellings T2 tes
that was mentioned before was used. The log-intensity image is the best candidate for comparing regions on the
basis of this test because differences in radar reflectivity are reflected in these image purely as variations of means
and because the form of the distribution is independent of the radar reflectivity. In order to check the validity of
this detector similar tests were performed as for the first detector.

t12

In simulated images without spatial correlation the threshold again corresponds to the theoretically predicted
one.

In Fig. 5 (left) the 5 % threshold is plotted versus the sampling ratio for the 15 uniform regions, this time in
the Log-Intensity SAR image. The theoretical threshold is lower than the one that was found experimentally for all
sampling ratios. The relative variation of the threshold over the different test windows decreases as the sampling
ratio decreases. This is illustrated by Fig. 5(right) where the ratio between the standard deviation and the average
of the experimental 5 % false alarm threshold is plotted as a function of the sampling ratio. At a sampling ratio
of 10 % this ratio is smallest. At 5 % sampling the ratio increases again because the number of samples is getting
too small (< 30). We will thus apply the detector with a sampling ratio of 10 %. However, the probability of false
alarms is always higher than the theoretically predicted one. The CFAR thresholds are determined experimentally
from simulated Fisher-Tippet distributed data with the same spatial correlation as the SAR image.

7. IMPROVEMENT OF EDGE LOCALISATION

Edge detectors based on differences between two adjacent scanning windows result in blurred edges. In order to
sharpen these edges we used a directional morphological operator. As the detectors provide a response for each
orientation of the set of scanning rectangles the approximate orientation of candidate edges is known a priori and
this information is used in the filter. We have adapted the morphological filter presented by Chanussot.!® The first
step fills small gaps in the contour detector’s result image. This can be done by a closing with reconstruction'® but
we have obtained better results using a median filter. In each pixel the median is calculated inside an elongated
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Figure 5. 5% Threshold vs. sampling ratio for sampling without replacement in uniform regions of the Log-Intensity
SAR image (left) and Ratio of standard deviation to average of the 5 % threshold vs. sampling ratio

rectangular array around that pixel. The maximum response is obtained if the rectangle is oriented in the direction
of the edge. The maximum is determined over a small range of orientations around the orientation of the detector’s
masks. This step thus combines smoothening with the filling of small gaps. The next two steps do follow the approach
presented by Chanussot!®: The supremum of directional openings is used to remove nonlinear or too short mountains
in the detector response. A closing with a small (5 x 5) structuring element is used to remove some other isolated
false alarms. The last step is an erosion to further narrow the result. In Fig. 6 the results of the some steps of this
morphological filter are shown on a small (32 x 32) part of the test image.
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Figure 6. Results of morphological filter: Left: Original response of (Levene) detector, Centre: Result of directional
median filter, Right: Final result

8. COMBINATION OF THE RESULTS OF THE EDGE DETECTORS
8.1. Combining the results for different directions of the processing window

Up-to now we have been working with the responses of the edge detectors for each orientation of the scanning window
separately. In order to obtain a final edge map the results for the different orientations need to be combined. Several
ways to do this are suggested in literature!©:

e Sum: Summing the results from all orientations which is equivalent to the taking average

e Maximum: Keep the maximum over all orientations



e Generalised Norm: Expand the notion of norm to multiple orientations!®: \/ EN/ 2 B2 (i) +E2(a‘+900)
with N the number of orientations and E(«;) the detector’s response at orlentatlon Q.

A ROC curve was constructed for these 3 combination methods for the Levene and the Hotellings test. The ROC
curves were calculated based on the results obtained in the real test image (Fig. 2). For the performance measured
by these ROC curves the sum and the generalised norm give exactly the same results. The maximum gives a lower
probability of detection at low false alarm rates. We will thus use the sum of the directional responses.

8.2. Combining the results of the two detectors

The fusion of different edge detectors can be done at several levels:

e Vectorise the results and fuse the resulting vectorised objects
e Fuse the thresholded image of each detector after combining the results for different directions

e Fuse the results for each direction separately

If the edges are vectorised before fusion the fusion is limited to some voting mechanism. Furthermore, the
vectorisation imposes some constraints on the edges and this can result in a lower detection rate. The second and
third possibilty are almost equivalent but the last fusion strategy automatically ensures that only edges that were
found by both detectors to have a similar orientation, are fused. This is the method that we used.

In order to fuse the results of the two detectors, these results should be rescaled such that they represent
comparable values, i.e. it makes no sense combining the values of the output directly as they correspond to different
significance levels for detection. The relation between the detector’s threshold and the probability for false alarms
(e.g. Fig. 4for the Levene Test) can be used to rescale each detector’s output.

For the moment two fusion methods were tested. The first method is based on geodesic reconstruction.'® The
idea is that the ideal result of fusion lies between the maximum and the minimum of the different detectors. If all
detectors detect an edge at a given position, the minimum and maximum are both high and close together. This
gives a high confidence in the presence of an edge in that point. If such a point is found in the image it is likely that
some neighbouring points also belong to an edge. Even if only one detector would confirm this. The proposed fusion
thus starts from the minima as markers that are dilated until they coincide with the maximum, i.e. starting from
the minima of all detector’s responses a dilation is iteratively executed until idempotence with the maximum.

Generally the false alarm thresholds used for the individual edge detectors vary from 1 to 5 %. Three input
membership functions were defined accordingly (see Fig. 7). Five output classes, corresponding to an increasing
edge strength, were defined. Some of the rules used to combine the results of the two detectors are given in table 3.
The minimum is used both as the combination and the implication operator. Centroid defuzzification was used to
get the final score.

NoEdge Intermediate Edge

Input Membership Functions

Figure 7. Input Membership Functions



Table 3. Rules for combining the results of the two multi-variate edge detectors

if (Levene=NoEdge) and (Hotelling=NoEdge) then (Output=NoEdge)
if (Levene=NoEdge) and (Hotelling=Intermediate) then (Output=WeakEdge)
if (Levene=Intermediate) and (Hotelling=Intermediate) then (Output=MediumEdge)
if (Levene=NoEdge) and (Hotelling=Edge) then (Output=MediumEdge)
if (Levene=Intermediate) and (Hotelling=Edge) then (Output=Edge)
if (Levene=Edge) and (Hotelling=Edge) then  (Output=StrongEdge)

9. RESULTS AND DISCUSSION

In order to compare the two edge detectors a set of test images with a vertical edge was simulated (having the
correct spatial correlation and speckle distributions) and the ROC curve was determined for both detectors with the
scanning rectangles in the direction of the edge. The simulated images have varying contrast over the edge. The
resulting ROC curves are shown in Fig. 8(left). From the ROC curves it can be concluded that none of the two
detectors is best over the complete range, i.e. the curve for the Levene test crosses the one for the Hotellings test
and the point where this crossing occurs depends on the contrast. This means that, even if the false alarm rate is
fixed, it is not possible to say that one detector is better than the other one, because this will depend on the contrast
of the edges in the image. It is thus not possible to decide a priori which test is better and it is necessary to fuse the
results of both detectors.

Based on the two fusion operators discussed in the previous section four different fusion methods were tried. The
first three use geodesic reconstruction as the fusion operator. In the first method there is no morphological thinning.
In the second the morphological filter is applied after the fusion and in the third before. The fourth method uses
the fuzzy inference system after morphological filtering. In Fig. 8(right) the ROC curve for the 4 methods is shown.
As a reference the result of the two individual detectors is also shown. If the morphological filter is not used, results
after fusion are worse than for the individual detectors. The fusion based on fuzzy inference provides slightly better
results than the other method.
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Figure 8. ROC curves for individual detectors at vaying contrast levels in simulated images (left) and comparison
of the 4 fusion methods applied on a real test image (right)

In order to obtain vectorised results a bar detector? was applied on the thresholded responses of the detectors or
after the fusion. In Fig. 9 the vectorised results for the two individual detectors at the 5 % false alarm threshold are
shown as well as the result of the fusion by fuzzy inference (after a 50 % threshold). Some false alarms persist. These
could be filtered out using higher-level tools that ensure the continuity of edges. The detectors give good results for
detecting edges between large regions. However, crossings of edges are sometimes missed and if the concentration of



edges is high, as in the built-up area on the left of the image, the detector performs poorly. The localisation of edges
should thus be improved.
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Figure 9. Vectorised results for Levene test (left), Hotellings test (centre) and Fuzzy Fusion (right)
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10. CONCLUSIONS

In this article two new edge detectors for single-look high-resolution polarimetric SAR images are presented. The
presented work is part of a project aiming to automatically register SAR images with maps and other images. The
first step is the registration between the SAR image and a map. The edge detectors are therefore designed to detect
edges between large areas that are likely to be also present on maps.

Both developed detectors are based on a multi-variate hypothesis test. The first one tests a difference in variance
and is applied to the complex image. The second one tests a difference in means and is applied to the log-intensity
image. The detectors seem to be complementary. Different methods to fuse their results are presented and compared.
Of the proposed methods, the fusion based on a fuzzy inference system gives the best results. Other fusion methods
should be tried though.

Both detectors give good results for detecting edges between large areas. However, crossings of edges are sometimes
missed. Furthermore, in areas where the concentration of edges is very high (e.g. built-up areas) the detectors only
find a small portion of the edges that are present. Although the detector is not designed for this case, it could
perhaps cope with such regions. In general the localisation of edges should be improved. The best algorithm to do
that depends on the type of area in the image. For completing edges of fields a method based on active contours'®
could be used. For finding the location of edges in built-up areas either another type of detector (e.g.?) should be
used or the edge map should be improved using for example watersheds.'® The information about the type of area
will be provided by the map.

One of the ideas that will be pursued further is to first use the edges between large areas together with other
information, such as the location of built-up areas!” or forests to find a first registration between the image and the



map and then use the information from the map to improve the results of the edge detection on the SAR image.
This will allow to refine the registration with the map and to obtain a registration between different images (using
e.g. the edges of different agricultural areas).

DN =

10.
11.
12.
13.
14.
15.

16.

17.
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