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Abstract

This article presents a new method for contour detection
in high-resolution polarimetric SAR images. The method
is based on multi-variate statistics of speckle in homoge-
neous regions in a SAR image and uses a hypothesis test
for the difference in variance between two adjacent regions
to find the contours. The detector is directly applied on
the single-look complex polarimetric SAR image. A pre-
processor, which is also based on multi-variate statistics,
is used to focus the attention of the detector on potentially
non-homogeneous regions within the image. Results of ap-
plying the contour detector on L-band polarimetric SAR im-
ages are also presented.

1. Introduction

The presented work is part of a project that aims at au-
tomatically register SAR images with other types of images
for remote sensing applications. The general idea is to use
a map as an aid for the registration. On a map of the same
region as the images the main objects (roads, forests, vil-
lages, etc.) are detected automatically. Then, for each type
of image, some of the objects found on the map are also de-
tected. Matching the objects will provide a first registration.
The purpose of the contour detector presented in this article
is thus to automatically find edges between large uniform
regions that are likely to be present on maps.

Automatic contour detection in Synthetic Aperture
Radar (SAR) images is a difficult problem due to the pres-
ence of speckle. Classical methods [3, 5] give unsatisfac-
tory results. However, the statistics of speckle in homoge-
neous regions of SAR images can be accurately modeled
and some methods that exploit these statistics to detect con-
tours have been presented in literature [2, 4, 8, 9]. These
methods were mainly applied on multi-look low-resolution
images.

Thanks to the increased spatial resolution of the new

airborne SAR systems and the availability of fully-
polarimetric data, new methods can be developed. This
paper describes a method to detect contours on fully-
polarimetric single-look complex images. The method is
based on the multi-variate statistics of speckle in uniform
parts of this kind of images. The detector treats the values
of the three polarisations as a single data vector as opposed
to detecting the contours in each polarisation separately and
fusing the results a posteriori. The next section describes
some important statistical properties of (polarimetric) SAR
images. Then a pre-processor is described that uses some of
these statistics to eliminate homogeneous regions from the
region to be explored by the contour detector. The fourth
section describes the actual contour detector. Section five
describes a filter to enhance the results of the detector. The
method is applied on an L-band polarimetric SAR image
and results are discussed in section six.

2. Some statistical properties of SAR images
2.1. Introduction

The primary geophysical quantity determining the ap-
pearance of SAR data is the complex radar reflectivity of
the imaged surface. This radar reflectivity expresses the fact
that, when an electromagnetic wave scatters from a given
position of the earth’s surface, the physical properties of
the terrain cause changes in both the phase and the ampli-
tude of the wave. In distributed targets each resolution cell
of the imaging system contains a large number of discrete
scatterers. As the wave interacts with the target, each indi-
vidual scatterer thus contributes a backscattered wave with
a phase and amplitude change. The resolution of the SAR
system is typically many times the wavelength of the radar,
hence, even if all elementary scatterers were identical, they
would still produce a very different phase in the incident
wave as the waves scattered from them have very differ-
ent path lengths. As the value of a pixel in the image is
determined by the coherent sum of all the scattered waves



within a resolution cell, this results in a noise-like charac-
teristic that is called speckle. Speckle is found in any image
produced by a coherent imaging system (e.g. laser, sonar,
ultrasound, radar). The statistical properties of the speckle
are very important as they can be used to develop detectors
that are well-adapted to SAR images.

Another important aspect to be taken into account when
developing detection or segmentation methods is correla-
tion: spatial correlation within one image as well as inter-
channel correlation.

These three topics are briefly discussed in the next para-
graphs.

2.2. Digtribution of specklein the SLC images

In single-polarisation Single Look Complex (SLC) im-
ages the speckle in non-textured uniform regions follows a
zero-mean normal distribution and the difference between
different uniform regions is characterised by a difference in
variance between these distributions [7].

The distribution of the complex fully polarimetric data
(i.e. HH, HV and HV values in each pixel) was verified to
be multi-variate normally distributed, again with zero mean
and with the difference between uniform regions charac-
terised by differences between the co-variance matrices.

2.3. Spatial correlation

The pixel spacing in SAR systems is always smaller than
the resolution cell. This leads to correlation between neigh-
bouring pixels in the SAR image. Furthermore, as the SAR
processing in range and azimuth direction is different, the
spatial correlation function is not circular symmetrical as
is often the case in images created by optical sensors (vis-
ible or infrared). The spatial correlation influences the va-
lidity of models used to construct detection or segmenta-
tion algorithms. The problem is often neglected. Some au-
thors have incorporated this into the model, leading to very
complex methods. This is necessary for low-resolution im-
ages. However, when dealing with high-resolution images,
the problem can be easily circumvented by sub-sampling
the image as long as the number of remaining independent
samples is still sufficient for the used segmentation or edge
detection method [7].

2.4. Correlation between thedifferent polarisations

In many articles the correlation between co- and cross-
polar polarisations (i.e. HH/HV and VV/HV) is supposed
to be zero. This is only the case for objects with azimuthal
symmetry. It is thus true in most vegetated areas but not in
man-made objects (villages). On the images we received,
i.e. L-band images from a region around an airfield, we

determined the inter-channel (between the different polari-
sations) correlation for several types of land-cover as well
as for the runway of the airfield. For each type of land-cover
the average over a number of examples was taken. Results
are presented in table 1.

Type HH HV \AY
Village | HH | 1.0 0.362 0.809
HV 1.0 0.389
VvV 1.0
Forest HH | 1.0 0.136 0.186
HV 1.0 0.136
VvV 1.0
Runway | HH | 1.0  0.057 0.389
HV 1.0 0.129
VvV 1.0
Grass HH | 1.0 0.0449 0.577
HV 1.0 0.0448
\AY 1.0
Fields HH | 1.0 0.032 0.588
HV 1.0 0.0144
\AY 1.0

Table 1. Correlation coefficients between po-
larimetric components for various types of
land-cover

3. The pre-processing step

The distribution of speckle in uniform regions of the po-
larimetric SLC images should follow a zero-mean multi-
variate normal distribution. This can be used to locate ho-
mogeneous regions in the SAR image, thus limiting the
search space for the contour detector. If samples are multi-
variate normally distributed, the mahalanobis distance from
the samples to the sample mean should follow a x? distri-
bution with degrees of freedom equal to the number of vari-
ables [6]. This can be checked using a x2-test. We used the
test with a 10 % significance level instead of the usual 5 or
1 % levels as we wish to avoid tagging a non-homogeneous
region as being homogeneous.

4. Description of the contour detector

The basic principle is often encountered in literature: the
image is scanned by a set of two adjacent rectangular win-
dows that are rotated around the current pixel (see fig 1). At
each positions and for some discrete orientations a statisti-
cal measurement is made in both rectangles. The difference
between the statistics in both rectangles is used to estimate



the probability that the edge between the two rectangles ac-
tually corresponds to an edge in the image.
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Figure 1. Principle of contour detector

The method focuses on detecting the main contours in
high-resolution images, delimiting large uniform regions
such as large fields and also the main roads. The detected
contours can then be used for registering SAR images with
other images or with maps on which the contours of the
same objects can be detected.

We have chosen to work directly on the single-look com-
plex (SLC) image. As mentioned earlier, the probability
distribution in polarimetric SLC images is zero-mean multi-
variate normal in uniform regions.

The contour detector problem can then be transformed
into a multi-variate hypothesis test, the null-hypothesis be-
ing that the covariance matrices are the same in the two
rectangular windows. The statistical test that was used to
measure the probability that two covariance matrices differ
is the Levene test [6]. Using a multi-variate Levene test pro-
vides several advantages as opposed to using the uni-variate
test for each polarisation and combining (fusing) the results
afterwards:

o Different speckle patterns in the different polarisations
cause random jitter in the location of the edges. A pos-
teriori fusion will thus result in thickened edges.

o If detectors are run on each channel separately, each
detector will have a probability of false targets corre-
sponding to the significance level used in the detector
(type one error). Combining these detections will thus
combine these errors. If the detector is multi-variate
there will only be one component in the error.

e The multi-variate Levene test compares covariance
matrices instead of just comparing variances. It thus
implicitly takes into account any inter-channel corre-
lation.

The samples from the two adjacent windows are trans-
formed in absolute deviations of sample means. In the case

of a single-look complex polarimetric image with complex
data of the type H  2HV V'V this results in:
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in which i is the index of the sample and k the index of
the rectangular window. The question whether two samples
display significantly different amounts of variance is then
transformed into a question of whether the transformed val-
ues show a significantly different mean [6]. This can then
be tested using a Hotellings 72 test [1].

The Hotellings T2 statistic is defined as:

n1n2(L_1 — L_z)tcfl(L_l — L_2)
n1 + N2

T? = 2)

where n; and n, are the number of samples used in both
rectangles, Ly is the average L vector in window k and C
is the pooled covariance matrix defined as:

(n1 — ].)Cl =+ (ng — ].)Cz
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The significance of T2 is determined by using the fact
that in the null-hypothesis of equal population averages the
transformed statistic:

_ (Tll +ng —p— 1)T2
(n1+n2—2)p

follows an F distribution with degrees of freedom p and
(n1 + n2 — p — 1), where p is the number of variables (i.e.
6 in our case). If we calculate F from the data, we can thus
directly associate the probability that the two variances are
different to it. However, if the F-statistic (4) is calculated
using all pixels in the rectangular windows, the experimen-
tally found 5 % threshold, for a uniform region, is higher
than the theoretically predicted one. This can be either due
to an intrinsic property of the images and in particular to the
spatial correlation or to a problem with Levene’s method. If
the effect is due to spatial correlation, it should diminish if
a smaller percentage of the points in the window are used to
calculate the statistic. We thus need to sub-sample. This can
be done either with or without replacement. The first step
however is to rule out the possibility of a problem with the
multi-variate Levene method. In order to do that, we have
constructed a set of multi-variate zero mean images with-
out spatial correlation but with inter-channel correlations
that are comparable to those actually found in one of the
uniform regions in a SAR image. The measured F-statistic
should have the correct distribution in this simulated image.

(4)



Experimental 5% Threshold vs. Sampling Ratio for both types of sampling
5 T T T T T T T T T

— Theoretical
Exp. without replacement

45 —-O- Exp. with replacement

3.5F -

15
0

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Figure 2. 5% Threshold vs. sampling ratio for
sampling with and without replacement for
the simulated image

For this test image we have calculated the 5 % threshold
as a function of sampling ratio for sampling with and with-
out replacement. The results are shown in figure 2. When
less than 10 % of the points are considered, both sampling
schemes are nearly equivalent and their values correspond
to the theoretical threshold. However, as the number of se-
lected points increases, the threshold for sampling with re-
placement increases while the one for sampling without re-
placement slightly decreases. In fact the behaviour for the
sampling without replacement corresponds to the theoreti-
cal behaviour of the threshold as shown in figure 3. The fact
that in the case of sampling with replacement the threshold
increases can be explained by the fact that the replacement
itself introduces correlation between the samples (it is pos-
sible that the same sample is chosen several times). This
experiment thus shows three things:

e The Levene method is valid for our experiment
e Sub-sampling should be done without replacement

e Correlation between samples can explain an increased
level for the 5 % threshold

We have thus established that subsampling without re-
placement reduces the effect of correlation. Now we would
like to determine what is the maximum sampling ratio al-
lowed to have results that are useful. Two things need to be
checked:

e Do the data indeed follow an F-distribution ?

e Is it possible to assign a constant false alarm threshold
independent of the “brightness” of the uniform region?
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Figure 3. Theoretical and experimental 5%
threshold vs. sampling ratio

The answer to these two questions was found by study-
ing the behaviour of the F-statistic in 15 homogeneous re-
gions with different “brightness”. For each region an F-
distribution was fitted through the data. A x2-test was used
to compare the “experimental” F-distribution with the the-
oretical one. For sampling ratios below 20 % the two dis-
tributions are equal (with a significance level of 5 %). At
30 % sampling rate the distributions are only equal if the
rectangles are horizontal (as the largest spatial correlation
was found to be in the vertical direction, the degradation of
the model appears faster using vertical windows). So, sam-
pling should be lower than 30 %.

To answer the second question, the 5 % threshold level
was determined experimentally from the histograms of the
F-statistic in the 15 uniform regions as a function of sam-
pling rate. The average and standard deviation over the 15
regions was determined. Results are shown in figure 4 for
both horizontal and vertical windows. From the figure it
appears that it is only possible to assign a global threshold
corresponding to a given probability of false targets for all
directions when 10 % or less of the points within the win-
dow are used to calculate the statistic. Otherwise a threshold
has to be set for each direction separately and the method
is not valid above 20 % sampling. The detector will thus
sample at 10 % and the threshold will be derived from the
average experimental F-distribution (see fig 5). As we are
only interested in finding contours of large regions, we use
a 51 x 11 rectangular window in the detector. For such
windows, a 10 % sampling rate still provides enough inde-
pendent samples for the method to be valid. As the method
will only detect edges between non-textured uniform areas,
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Figure 4. Experimental 5% False Target
Threshold vs.sampling ratio for the different
(uniform) test regions and for vertical and
horizontal windows

sampling on a fixed grid is equivalent to random sampling
(without replacement). This was also checked experimen-
tally and results were indeed found to be equivalent.

5 The post-processing step

In order to filter out individual pixels and to fill small
gaps in the detections we used a small morphological oper-
ator consisting of an erosion followed by two dilations as a
pre-processing step for the binary skeleton filter. The width
of the response of the detector depends on the width of the
used windows. This results in blurred edges. In order to
sharpen these edges, a filter was applied. As the detector is
applied using a mask in a given direction, the approximate
orientation of candidate edges is known a priori and this in-
formation is used in the filter, i.e. a one dimensional filter is
applied in a direction perpendicular to the edge. If we know
the 5 % false alarm threshold, that threshold can be applied
in order to obtain a binary image. The filter finds the centre
of binary blocks of given size and replaces its value with
the maximal detector output inside that block setting the re-
mainder of the block to zero.

6 Results

The detector was tested on an L-Band SAR image. A
part of the HH-polarised component of the original image
is shown in fig 6. For the pre-processor, we used 30 by 30
windows with a sampling rate of 20 %. At each step the
windows are translated over half the window size. For the
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Figure 5. False alarm probability vs. thresh-
old for experimental and theoretical F-
distribution

contour detector we applied the 1% false alarms threshold,
corresponding to a value of 4 for the F-statistic. Results
are shown in fig 7. These results were vectorised (see fig
8) using a bar detector to connect the crest of the contour
detector’s response [5]. As the detector uses a window of
51 x 11, narrow bars (e.g. narrow roads) are not found.
On the other hand most edges between large uniform area
are well detected, even if the area contains some texture
in which case the assumption of multi-normal distributed
speckle is no longer valid.
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8 Conclusions

A multi-variate contour detector for high-resolution po-
larimetric SAR images was presented. The aim of the de-
tector is to find edges between large uniform regions. We
chose to develop a detector for polarimetric SLC images.
The detector is based on a multi-variate test of difference in
variance between two adjacent rectangular windows located
at the current pixel. The obtained measure is then trans-
formed in a probability that the common side belongs to an
edge. The rectangles are then rotated around the current



Figure 6. Part of the L-Band image (HH-
component)

Figure 7. Results of the described method

Figure 8. Vectorised contours

pixel. Due to the spatial correlation it is necessary to sub-
sample within these rectangular windows. This ensures that
the statistical model is valid such that a constant false alarm
rate threshold can be found independent of the “brightness”
of the regions. A pre-processor, also based on multi-variate
statistics is used to focus the attention of the contour de-
tector to non-homogeneous regions of the image. The de-
veloped contour detector is designed to detect only edges
between non-textured areas. However, experiments show
that edges between a textured (forest or village) and a non-
textured area are also detected.
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