
6-1

DATA FUSION FOR LONG RANGE TARGET ACQUISITION

Patrick Verlinde, Dirk Borghys, Christiaan Perneel, Marc Acheroy
Signal and Image Centre
Royal Military Academy

Renaissancelaan 30,.
B1000 Brussels

Belgium

SUMMARY  

An approach to the long range automatic detection of vehicles,
using multi-sensor image sequences is presented. The algorithm
we use was tested on a database of six sequences, acquired
under diverse operational conditions. The vehicles in the
sequences can be either moving or stationary. The sensors are
stationary, but can perform a pan/tilt operation. The presented
paradigm uses data fusion methods at four different levels
(feature level, sensor level, temporal level and decision level)
and consists of two parts.
The first part detects targets in individual images using a semi-
supervised approach. For each type of sensor a training image is
chosen. On this training image the target position is indicated.
Textural features are calculated at each pixel of this image.
Feature level fusion is used to combine the different features in
order to find an optimal discrimination between target and non-
target pixels for this training image. Because the features are
closely linked to the physical properties of the sensors, the same
combination of features also gives good results on the test
images, which are formed of the remainder of the database
sequences. By applying feature level fusion, a new image is
created in which the local maxima correspond to probable target
positions. These images coming from the different sensors are
then combined in a multi-sensor image using sensor fusion. The
local maxima in this multi-sensor image are detected using
morphological operators. Any available prior knowledge about
possible target size and aspect ratio is incorporated using a
region growing procedure around the local maxima. A variation
to this approach, that will also be developed in this paper,
combines the previous feature and sensor level fusion, by
extracting the features in each sensor as before but using the
feature level fusion  directly on the combination of all features
from all sensors in what is sometimes called a « super feature
vector ». Tracking is used in both cases to reduce the false alarm
rate.
The second part of the algorithm detects moving targets. First
any motion of the sensor itself needs to be detected. This
detection is based on a comparison between the spatial co-
occurrence matrix within one single image and the temporal co-
occurrence matrix between successive images in a sequence. If
sensor motion is detected it is estimated using a correlation-
based technique. This motion estimate is used to warp past
images onto the current one. Temporal fusion is used to detect
moving targets in the new sub-sequence of warped images.
Temporal and spatial consistency are used to reduce the false
alarm rate.
For each sensor, the two parts of the algorithm each behave as
an expert, indicating the possible presence of a target. The final
result is obtained by using decision fusion methods in order to

combine the decisions of the different experts. Several « k out of
n » decision fusion methods are compared and the results
evaluated on the basis of the 6 multi-sensor sequences.

1 INTRODUCTION  

Long range automatic detection of vehicles is of great military
importance to modern armed forces. The most critical factor of
any system for automatic detection is its ability to find an
acceptable compromise between the probability of detection (=
1 - probability of a miss) and the number of false alarms. This is
the classical trade-off one finds in binary hypothesis testing
between the two types of error one can make : the false rejection
(FR : which corresponds here to a miss : there is a target, but it
has not been found) and the false acceptance (FA : which is in
this case the same as a false alarm : there is no target, but the
system thinks there is one). In a single sensor detection system it
is well known that if one reduces one type of error, the other
type of error automatically increases. A possible way-out of this
deadlock is to use more than one sensor and to combine the
information coming from these different « experts ». This
combination or (data) fusion can be done on different levels. In
this paper, only the (common) case of a centralised fusion
processor with all its sensors connected in parallel will be
considered.
In the specific data fusion literature [1-5] one often distinguishes
between the following (or equivalent) fusion levels : low level
fusion (also called score or measurement level fusion), medium
level fusion (which includes feature and sensor level fusion),
high level fusion (also called decision level fusion) and temporal
level fusion. As can be expected, in real (-time) applications,
there is a trade-off to be made between the amount of
information that can be combined and the bandwidth necessary
to communicate all this information to the centralised fusion
processor. The lower the level of fusion, the more information is
available to be combined, but the larger becomes the bandwidth
necessary to communicate with the centralised fusion processor
(or for a fixed bandwidth, the slower becomes the fusion
process). Vice versa one sees that when the level of fusion gets
higher, the available information diminishes, but so does the
necessary bandwidth. Furthermore not all data fusion levels are
always applicable. For instance, if low level fusion is going to
be used, care must be taken to combine only similar entities
(scores, measurement results,...). It is therefore impossible to
use low level fusion to combine the raw results coming from
two (or more) totally different sensors (e.g. an imaging sensor
and a range finder). But this constraint doesn’t exist any longer
on the decision level, where each sensor is considered as a
separate « expert », who decides on his own. In the special case
of target detection where the « hard » binary decision rule is
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used (the « hard » decision is indeed bi-valued : target present
(1) or not (0)), the central fusion processor contents itself to
combine only the decisions (the 1’s and the 0’s) coming from
different sensors, without considering the type of sensor. As a
general conclusion concerning the different data fusion levels,
one can state that all different fusion levels have their
importance and their specific applicability domain.

Based on these considerations, we have tried to use data fusion
on several levels to try to optimise the use of the available data.
That is basically why this paper describes an approach to tackle
the previously exposed problem using four different data fusion
techniques related to several levels : feature level fusion, sensor
level fusion, temporal level fusion and decision level fusion.
The only fusion level that is not used in this paper is the low
level fusion. This technique (in the form of pixel level fusion) is
mainly used in remote sensing applications [6, 7]. In the main
approach, we do however use two different medium level fusion
techniques. In the following sections the use of these different
data fusion techniques will be explained in more detail.

2. IMAGE DATABASE  

For the development and testing of the algorithm, a database of
6 multi-spectral image sequences, numbered MS01 to MS06 1

was compiled. The sequences correspond to two scenarios. The
first scenario is a typical surveillance scenario in which the
sensor watches a scene and tries to detect targets entering its
field of view(FOV). In this scenario, the targets are moving. The
second scenario is a reconnaissance scenario in which the sensor
is mounted in a new terrain and it tries to detect the presence of
vehicles which can now be stationary or moving. During image
acquisition the sensor is stationary in both scenarios; it can only
perform a pan and tilt operation. The following table presents
some properties of the sequences.
Seq
nr

Targets Target
Motion

Sc Type of
Sensors

MS01 Helicopter
Truck

Across FOV 1 LW,TV

MS02 Truck Towards
Sensor

1 LW,TV

MS03 Helicopter Across FOV 1 LW,TV
MS04 2 Tanks None 2 LW,SW,TV
MS05 2 Tanks

+Camoufl.
None 2 LW,SW,TV

MS06 Helicopter Across FOV 1 LW,R,G,B

Table 1: Properties of sequences.

In the table the Sc column presents the scenario to which the
sequence corresponds. In the sensor column the following
abbreviations are used: LW and SW denote long-wave and
short-wave infrared respectively. TV is B/W visual images.
R,G,B are the components of a colour visual image. Each set of
three subsequent sequences were acquired by the same sensor
set. Sequence MS05 is the same as sequence MS04 except for
the fact that in MS05 the targets are camouflaged.
                                                          
1 MS01-MS03: Courtesy of Defense Research Establishment
Valcartier, Quebec, Canada ; MS04-MS05: Courtesy of Naval
Air Warfare Center, China Lake, US; MS06: Courtesy of
ASIAT-DTT, Peutie, Belgium

3. OVERVIEW OF THE APPROACH  

The proposed algorithm consists of two independent parts. The
first part searches for targets in single images while the second
part uses multiple subsequent images in order to specifically
find moving targets.

Images

Detect 

Moving

Targets

Detect 

Moving

Targets

Target Selection

Sensor Fusion

Decision Level Fusion

Feature

Level 

Fusion

Image

Texture 
Features

Extraction

Images

Sensor 2

Feature

Level 

Fusion

Image

Texture 
Features

Extraction

Sensor 1 Sensor 1 Sensor 2

Static Treatment

Target Detection in Single Images

Dynamic Treatment

Moving Target Detection

Figure 1: Global Overview of the method

For the first part of the algorithm we have chosen a semi-
supervised approach based on texture feature extraction.
Allthough we are not interested in explicitly modelling or
measuring texture, these texture features are interesting because
they are independent measurements of the local spatial
distribution of grey values within an image and it is likely that
some of these parameters will highlight the difference between
targets and background. The texture parameters are even more
appealing because it can easily be seen that features that are
classically used for target detection such as intensity and
gradient are just special cases of these texture parameters.
Feature level fusion is used to combine the texture features from
each image into a new image in which the grey value at each
pixel is proportional to the probability that the pixel belongs to
the target. These images from the different sensors are fused in a
sensor fusion step.
The second part of the algorithm detects moving targets in sub-
sequences from each sensor separately.
Each part of the algorithm behaves as an expert indicating the
possible presence of vehicles in the scene. Decision fusion is
used to combine the outcomes from all experts.

4. TARGET DETECTION IN SINGLE IMAGES (TDSI  
Module)  

Introduction

For the detection of targets in single images, a semi-supervised
approach based on texture features was chosen. For each sensor
type, one image was selected to constitute the learning database.
On these images the true targets were delimited. Then several
texture parameters were calculated at each pixel of these
learning images and logistic regression [8] was used to find a
combination of the texture parameters that is proportional to the
probability of finding a target at the corresponding image
location.
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The actual detection algorithm then applies the same
combination to the texture features calculated on the remainder
of the image database (test images). When this function is
applied to the texture features calculated at each pixel of a test
image, a new image, called feature-level-fused image, can be
formed in which the maxima correspond to likely target
positions. These feature-level-fused images, obtained from all
the different sensors, are then fused again in a subsequent sensor
fusion step.
To find the possible target positions, first the local maxima are
determined in this sensor-fused image and then available prior
knowledge about possible target size and aspect ratio is used to
reject false targets.
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Texture Parameters

The calculation of the texture features is based on the co-
occurrence matrix. The co-occurrence matrix is defined as a
function of a given direction and distance, or alternatively, as a
function of a displacement (dx,dy) along the x and y direction in
the image. For a given displacement (dx,dy), the (i,j) element of
the co-occurrence matrix is the number of times the grey value
G at the current position (x,y) is i when the value at the distant
position (x+dx,y+dy) is j.

( )C i j P G x y i G x dx y dy jdx dy, ( , ) ( , ) ( , )= = + + =

The co-occurrence matrix can be calculated on the whole image.
However, by calculating it in a small window scanning the
image, a co-occurrence matrix can be associated with each
image position. The centre of the window is denoted (xc, yc) and

the corresponding co-occurrence matrix is C i jx y
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Figure 3: Co-occurrence matrix

In Figure 3 an example of a co-occurrence matrix is shown. The
matrix corresponds to the small window of the image on the left
and was calculated for a displacement of dx = 1, dy = 2. The
textural features that were used, were introduced by Haralick [9-
11] and are widely used in texture analysis. Based on the local
co-occurrence matrix, the used parameters are defined as
follows:
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We are not interested in modelling or measuring texture but
only in detecting a difference between target and background
pixels. The "texture parameters" are only used as features of
which we hope that some will highlight the difference between
target and background. Because we do not intend to measure the
texture within the target, the parameters are useful even for
small targets and we can chose an arbitrary displacement (dx =
1, dy =1) for all calculations of the co-occurrence matrix.
The results for each texture feature can be converted into an
image. Figure 4 shows the texture images corresponding to the
first image set (IR and VIS) of sequence MS01.
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Figure 4: texture images

As can be noticed in Figure 4, the vehicles are clearly visible in
some of the texture images. Hence the idea to combine the
texture features to get an optimal discrimination between
background and targets. When only two classes are involved, as
is the case here (targets/ background), logistic regression offers
an appropriate approach [8].

In the learning phase, at each pixel of the learning image(s), the
texture features are calculated and stored in a table. Then the
human operator interactively indicates the bounding rectangles
surrounding the targets in the learning image(s) and a column is
automatically added to the table assigning each measurement in
the table to either class 0 (background), when it corresponds to
an image pixel that falls outside the bounding rectangles, or
class 1 (targets) when it is inside one of the rectangles. Logistic
regression is then used to find a combination of the form :

( )p F
e

e

x y

b b F x y

b b F x y

i i
i

i i
i
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target
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eq  1: Logistic Function

in which p Fx y, ( | )target
r

 is the conditional probability that a

pixel (x,y) belongs to the class 1 (target class) given the vector

of texture parameters 
�

F at the given pixel. The logistic
regression was carried out using Wald’s forward method. In this
method, at each step, the most discriminant feature is added and
the significance of adding it to the model is verified. This means
that not all features will necessarily be included into the model.

Feature level fusion

If the learning images are representative for the images of a
given sensor type, the most discriminating features for each
sensor will have the highest weights bi. Therefore, when using
the same weights to combine the feature images of the
remainder of the database into new images using equation eq  1,
targets will appear as local maxima. This is the feature level
fusion.

Sensor Fusion

The sensor fusion step combines the images obtained by the
feature level fusion step. In the feature-level-fused images, for
each sensor, targets appear as local maxima. Therefore it is
possible to fuse these images by a simple multiplication. In the
new images the targets will still appear as local maxima.

Region Growing around Local Maxima

In the sensor-fused image the local maxima will correspond to
likely target positions. To detect the targets it is thus necessary
to find these local maxima. A region growing procedure around
the maxima is then used to incorporate available prior
knowledge about possible target size and aspect ratio.

Local Maxima

The detection of local maxima is based on a succession of
morphological operations [12, 13]. The basic operator is a
dilation with a 2 by 2 structuring element.

Region Growing

To incorporate any available prior knowledge about the
possible range of target size or aspect ratio, a region growing
procedure is used. The initial regions for the region growing are
the local maxima in the image. Surrounding pixels are added to
these regions as long as their grey level differs less than a given
threshold from the value at the local maxima. If the region
becomes too large it is discarded. If the region growing of a
given region stops before it reaches the upper size-limit, the
other constraints are checked. If a constraint is not satisfied, the
region is discarded.

Clutter rejection
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To reduce the number of false targets, a simple clutter rejection
scheme was implemented. A target is only declared if it was
present in at least 7 out of 10 preceding images. More clever
tracking methods [14, 15] could be used, but because our main
interest is the exploration of data fusion methods, we did not
implement this yet.

Modes of operation

The presented approach for the detection of targets in single
images allows us to experiment with different levels of fusion.
The target detection can be performed on the feature-level-fused
images of each separate sensor (mode M1).
The second mode (M2) combines the feature-level-fused images
from all sensors using the sensor fusion step described above.
In the third mode (M3), the logistic regression is applied to a
superset of texture features, i.e. the feature-level-fused image is
obtained by applying the logistic function to the set of features
obtained from all sensors. This is only possible if the images
from all sensors are registered.
A subdivision of modes 1 and 2 can be made according to
whether the learning images used were acquired from the same
sensor (i.e. the LW, SW and TV sensors for sequences MS04-
05) or from the same generic class of sensors (i.e. using images
from the LW and TV sensor of sequence MS01 to yield the
weights for respectively all infrared-like sensors and all visual
sensors).

5. MOVING TARGET DETECTION (MTD Module)  

The second part of the algorithm focusses on the detection of
moving targets. In order to detect moving targets, any sensor
motion needs to be detected and its effects compensated first.
Then, in a temporal fusion step, preceding images can be
warped onto the current one. Moving objects will appear as a
difference between the original image and the warped ones.

Detection of sensor motion

The detection of sensor motion is again based on co-occurrence
matrices. This time the co-occurrence matrix is calculated
between an image and the preceding one (temporal co-
occurrence matrix).

( )C i j P G x y t i G x dx y dy t dt jx y
dx dy dt
,

, , ( , ) ( , , ) ( , , )= = + + + = If

no sensor motion occurred between the two images, ideally, for
dx=dy=0 (i.e. no spatial displacement), all non-zero elements of
the temporal co-occurrence matrix should lie on the diagonal.
However, due to noise, there will be a small spread along the
diagonal. If one calculates the spatial co-occurrence matrix for a
small displacement, the spread along the diagonal is due to noise
and to the fact that the image is not homogeneous.Therefore,
when comparing this spatial co-occurrence matrix with the
temporal co-occurrence matrix, the spread along the diagonal is
expected to be the largest in the former one if no motion
occurred between the two images that were used to calculate the
temporal co-occurrence matrix. When motion is present, the
spread along the diagonal quickly becomes larger. The
measurement we used to detect sensor motion is based on the
percentage of off-diagonal points in both co-occurrence
matrices:

MC

C i j

C i j

i jj

ij

= ≠
∑∑

∑∑
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This is calculated for both the temporal MCtemp and for the
spatial co-occurrence matrix MCspat. Sensor motion is said to be
present if
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−
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Figure 5: Detection of sensor motion

In Figure 5 the spatial and temporal co-occurrence matrix are
shown. The upper images show the matrices for a part of a
sequence where no sensor motion was present. The lower
images show an example of both matrices calculated in a part of
the same sequence where the sensor was moving.

Motion Estimation

If sensor motion is detected, we need to estimate it and
compensate its effects on the images. Because it is known that
the sensor is stationary and can only do a pan or tilt, the
corresponding motion in the image will consist of a uniform
translation. The motion is estimated by searching for the
translation that optimises the correlation for a few horizontal
and vertical lines. If the sensor is mounted in a moving vehicle
or no apriori knowledge about the type of sensor motion is
known, methods based on the model of a moving rigid planar
patch [16] or optical flow techniques can be used [17].

Detection of moving targets

Once the sensor motion is estimated, preceding images are
warped onto the current one. Then the original image is
subtracted from the warped ones. If a moving object is present
in the scene, we should find a large value at its position. The
resulting images after subtraction are therefore thresholded and
objects with acceptable size and aspect ratio are selected using a
region growing procedure. Tracking is used to get the target list.
Figure 6 shows the result of subtracting the original image from
the warped ones.
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Figure 6: Detection of Moving Targets

6. DECISION FUSION  

The two parts of the algorithm each behave as experts indicating
the possible position of targets in the scene. The final decision is
reached by fusing the results of these experts. Because each
expert only provides a binary decision - i.e. either a target is
present or it is not - the decision fusion is implemented as a
weighted ‘‘k out of N’’ voting-rule  [1, 5]. The weights attributed
to the decisions of each expert can depend upon several
considerations.
For the detection of moving targets, each single sensor acts as
an expert. For the detection of targets in single images, the
decision was made after fusing the feature images from all
sensors in Modes M2 and M3. In Mode M1, results from each
separate sensor are passed to the decison level fusion step. The
weights to be attributed to the decision of each expert will need
to be adapted accordingly.
The weights may also depend on the type of scenario. In the
surveillance scenario, the primary expert is the motion detector,
whereas in the second scenario (reconnaissance), both types of
expert are equivalent.

7. RESULTS AND DISCUSSION  

In this section the results for the two parts of the algorithm are
presented first. Then some results of decision fusion are
presented.

Results of TDSI Module

Results of the feature-level fusion

For the feature level fusion a learning image set needs to be
identified. For the so-called “generic sensor case”(GSC), the
learning image set consists of the first Infrared (LW) and Visual
image of MS01 on which the targets appear.
For the “sensor kind case”(SKC) three sets of learning images
were identified. For sequences MS01-MS03 they are the same
as the ones used in the “generic case”. For sequences MS04-
MS05 the first multi-sensor image set of MS04 is used, yielding
weights for LW-,SW- and TV-type sensors. For sequences
MS06 the first image set of MS06 is used. For the fusion of the
superset of features (SSF) the learning images were the same as
for the “sensor kind case”. The following table presents the
weights obtained for MS04-MS05.

Case Sens b0 b1 b2 b3 b4 b5 b6
GSC LW

SW
-15 2.4 0 0 4.7 0 0.01

TV -18 0 0 4.7 5.6 2.6 0
SKC LW -18 0 0.4 0 6.3 4.8 -0.008

SW -18 0 0 0 7.0 10 -0.06
TV -19 0 -0.06 4.6 7.6 3.5 -0.004

SSF LW -31 4.9 0 0 8.9 0 0
SW 0 0 0 0 0 0 -0.05
TV 0 0 0 0 6.8 8.8 -0.06

Table 2: Weights obtained by logistic regression for
sequences MS04 and MS05.

Results for the single sensors (M1)

For each sequence, the probability of detection (Pd) and the
average number of false targets per image (Nft) is given for both
the “Generic Sensor Case” and the “Sensor Kind Case”. Please
note that for the first three sequences, the two cases are identical
because the “generic sensor set” is the set of sensors that were
used to acquire these sequences. For sequences MS04 - MS06
the results obtained for the SKC case are slightly better than
those obtained for the GSC in most cases. However, the inverse
is true for MS06LW. This is due to the choice of the learning
image in the SKC case. The learning image is the first image on
which the target appears. In the infrared image, the target
happens to be white on a light grey background (clouds) and is
very difficult to see. Because, in a part of the sequence, its
background becomes a clear sky (dark), the weights are no
longer appropriate and performance drops.

Sequence Sensor GSC SKC
Pd Nft Pd Nft

MS01 LW 85 10 85 10
TV 32 4 32 4

MS02 LW 0 2 0 2
TV 0.5 1.4 0.5 1.4

MS03 LW 84 11 84 11
TV 21 16 21 16

MS04 LW 97 16 98 13
SW 43 2 63 6
TV 98 14 93 13

MS05 LW 81 12 99 14
SW 0 1.16 9 4
TV 51 14 98 11

MS06 LW 50 27 31 7
RD 89 6 94 2.5
GR 96 0.4 73 2.4
BL 90 0.25 82 0.57

Table 3: Results for single sensors

In MS02 targets disappear in the large number of false targets
caused by noise. They are only sporadically detected by the first
part of the algorithm and rejected by the clutter rejection stage.

Results after sensor fusion (M2)

The following table presents the results after the sensor fusion
step.
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Sequence GSC SKC
Sequence Pd Nft Pd Nft
MS01 83 3 83 3
MS02 20 5 20 5
MS03 16 16 16 16
MS04 95 2 98 0.07
MS05 94 0.2 96 0.15
MS06 23 7 47 0.8

Table 4: Results after sensor fusion

Results using superset of features (M3)

Sequence Pd Nft
MS01 88 10
MS02 0.5 1.7
MS03 93 31
MS04 0.4 12
MS05 0 20
MS06 40 6

Table 5: Results of superset of features

Results of MTD Module

For the moving target detection a threshold is defined as the
number of subsequent images in which the target is detected.
The maximal number of subsequent images is 9.
The following tables present the results as a function of the
threshold T. Moving targets were only found in sequences
MS01-MS03 and in MS06. For MS06 results for the three
visual components were very similar, therefore only the red
component is shown.
T MS01 MS02

LW TV LW TV

Pd Nft Pd Nft Pd Nft Pd Nft

1 88 0.06 48 0.87 30 1.6 39 0.48
2 82 0.03 47 0.7 25 0.37 36 0.29
3 63 0.01 45 0.5 19 0.16 32 0.19
4 53 0 44 0.15 12 0.06 23 0.14
5 52 0 44 0.02 9 0.03 17 0.10
6 52 0 42 0.02 4 0.02 9 0.06
7 51 0 41 0 1 0.01 4 0.03
8 0 0 0 0 0 0 0 0

Table 6: Results of MTD for sequences MS01 and MS02

T MS03 MS06

LW TV LW RD

Pd Nft Pd Nft Pd Nft Pd Nft

1  77 0.02 55 0.03 7 1.1 81 0.19
2 74 0.02 44 0.02 4 0.62 81 0.15
3 73 0.01 38 0.02 2 0.26 80 0.15
4 73 0.01 24 0.02 0 0.12 75 0.11
5 71 0.01 6 0.01 0 0.04 65 0.09
6 66 0.01 0 0.01 0 0 51 0.06
7 58 0.01 0 0.01 0 0 32 0.04
8 9 0 0 0 0 0 4 0

Table 7: Results of MTD for sequences MS03 and MS06
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Figure 7: Probability of detection for MTD vs. threshold
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Figure 8: Average number of False Targets per image for
MTD vs. threshold

In Figure 7 and Figure 8 it can be noted that by setting the
threshold to 3 the number of false targets is greatly reduced
while the probability of detection is hardly affected. Therefore
we will use the threshold 3 in the decision fusion.
Another remark is that in sequences where moving targets are
detected, the MTD module outperforms the TDSI module (cf.
Table 3, Table 6 and Table 7)

Results after decision fusion

In sequences corresponding to scenario 1 (surveillance) the
motion detector is the primary expert. In the decision fusion we
should therefore attribute the highest weight to it.
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In the reconnaissance scenario, the motion detector is equivalent
to the target detector in single images and both experts should
have the same weight.
The “K out of N” decision fusion only accepts a target if the
number of experts N ertsexp  that have detected it is above a

certain threshold T. Special cases for this threshold are:
• AND:  T N erts= exp

• OR: T = 1

• Majority voting: T
N erts= +exp

2
1

The following tables present the results for both scenarios at
different thresholds. In Table 8 the results for sequences MS01-
MS03 are shown after fusion of the outcomes for each
individual sensor(mode M1). In Table 9 the results of fusing the
sensor-fusion results with the motion data are shown for the
same three sequences (M2). Please note that sequences MS01-
MS3 were acquired using two sensors, the number of experts is
2 for the TDSI module (in mode M1) and 2 for the MTD
module. In the decision fusion both parts of the algorithm have
the same weight. In mode M2 only one expert is available for
the TDSI module. However, it is counted twice to ensure that
both parts of the algorithm have the same weight in the final
decision.
Table 10 shows the results of the decision fusion for MS01-
MS03 using the super-set of features (mode M3).
Table 11 shows the results of the decision fusion for sequence
MS06 using the outcomes of the TDSI module applied to
individual sensors (mode M1) and the results using the
outcomes of the sensor fusion step. For both modes, the results
are given for the “generic sensor case” and the “sensor kind
case”. Please note that, as in sequence MS06, we have 4 sensors
(LW,RD,GR and BL), there are 8 independent experts.
In sequences MS04 and MS05 all targets are stationary and the
MTD module does not report any targets. Therefore the decision
fusion step is not necessary.

T MS01 MS02 MS03
Pd Nft Pd Nft Pd Nft

1 96 20 36 2 85 11
2 66 3 16 0.7 73 1
3 54 0.86 3 0.24 39 0.5
4 30 0.27 3 0.18 0 0.01

Table 8: MS01-MS03: Results of decision fusion using
outcomes from individual sensors (mode M1)

T MS01 MS02 MS03
Pd Nft Pd Nft Pd Nft

1 65 3 54 5 79 20
2 49 0.9 17 0.4 63 0.8
3 3 0.11 3 0.1 19 0.18
4 0 0.01 0.5 0.01 6 0.01

Table 9: MS01-MS03: Results of decision fusion using
outcomes from sensor fusion step (mode M2)

T MS01 MS02 MS03
Pd Nft Pd Nft Pd Nft

1 95 11 36 2 90 28
2 58 0.9 16 0.46 67 1.98
3 36 0.31 3 0.09 43 0.53
4 3 0.05 0.5 0.01 7 0.05

Table 10: MS01-MS03: Results of decision fusion using
outcomes of the super set of features (mode M3)

T MS06
 (GSC)

MS06
(SKC)

MS06SF
(GSC)

MS06SF
(SKC)

MS06
(SSF)

Pd Nft Pd Nft Pd Nft Pd Nft Pd Nft
1 98 34 98 13 98 0.79 98 0.7 84 6.5
2 98 3 94 2.5 69 0.59 64 0.3 55 1
3 86 1.4 73 1.1 29 0.41 19 0.3 6 0.2
4 58 0.7 32 0.7 0.9 0.02 0.9 0.1 4 5.9

Table 11: MS06: Results of decision fusion using the
GSC and SKC for individual sensors and after sensor

fusion and using the super set of features (SSF).

Discussion

For the discussion, the fusion method that gives the best results
will be identified for each sequence separately. Then these “best
results” will be analysed as a function of some of the properties
of the sequences. The notion of best results depends on the
application. For some applications the probability of detection is
the critical factor while for others the ratio between probability
of detection and number of false targets has to be maximised.
To identify the “best fusion method” for each sequence, we have
chosen the latter criterion (Pd/Nft). In the previous tables, these
best result are highlighted with italic letters on a grey
background. Please note that, for sequences where moving
targets are present, the MTD algorithm used on a single sensor
sometimes gives a higher ratio Pd/Nft than any of the fusion
results. In all cases fusion will however increase the probability
of detection.

Best results per  sequence

MS01:
For MS01 the best results are obtained after decision fusion of
the results obtained with the super-set of features (TDSI-Mode
M3) and the results from the moving target detection.

MS02:
For MS02, the results of the TDSI module for single sensors
(mode M1) and for the super-features (mode M3) are very poor.
The targets are completely lost in the noise and rejected by the
clutter rejection algorithm. For mode M2, results are slightly
better. This is because the targets are enhanced by multiplying
the feature-level-fused images while noise is tampered. The
moving target detection gives better results. In the decision
fusion, the best results are obtained by fusing TDSI-mode M2
with the MTD results.

MS03:
For this sequence the best results are obtained by the decision
fusion of the results obtained by the TDSI module for single
sensors and the MTD outcomes.
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MS04 and MS05:
The MTD module does not report any targets. The best results
are obtained by mode M2 of the TDSI module.

MS06:
The LW and TV sensors compete for the detection of the
targets. The SW gives less good results. The best results are
obtained after the decision fusion of the sensor fused data from
the SKC case. It is interesting to note that the difference
between the results of the SKC and the GSC case is very small.

Analysis of  “best results”:

We will now try to explain why a given fusion method gives the
best results for each sequence.  We will try to correlate
subjective notions of image quality and sequence uniformity to
the results.
For MS04 and MS05 the MTD doesn’t find any targets,
therefore it makes no sense to perform the decision fusion of
TDSI results with MTD results. For these two sequences the
LW and TV sensors give images that have a similar quality
while the SW sensor gives a much lower contrast.
For MS01 both sensors provide images that have a similar
quality and the sequence is uniform (targets have the same
contrast with their surroundings throughout the sequence). For
MS02 the images obtained from the LW sensor are less good
than those obtained from the TV sensor.
For MS06 this is also the case. For MS03 the target is hardly
visible in the beginning of the sequence while its contrast
gradually increases.
We can make the following statements:
• If the sequence is not uniform, using M3 gives bad results

because the test image is not characteristic for the rest of
the database and using the super-set features causes
features that allow detection for some sensors to be
discarded.

• If the sensors are equivalent and the sequence is uniform,
M3 gives good results.

• If one of the sensors provides images of lesser quality, both
using the super-set of features (M3) and the single sensors
(M1) give rise to too many false targets (due to noise). The
sensor fusion step (M2) however reduces the potential false
targets before the actual target detection.

• Because a simple multiplication is chosen for the sensor
fusion step, the method based on sensor fusion (M2) is not
applicable if one of the sensors is not operational.

The following figure presents these findings graphically.
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Although these results seem logical, due to the fact that we only
have 6 sequences to test this and because we did not use any
objective measurements of image quality or sequence
uniformity, this can not be generalised.

8. CONCLUSIONS  

In this paper the use of data fusion at several levels is explored.
The method was tested on a database of 6 multi-spectral image
sequences. The approach consists of two main parts. The first
part detects targets in single images (TDSI module) while the
second part tries to detect moving targets (MTD module). The
motion detection is performed for each sensor separately.
The TDSI module is based on texture features. Several texture
features are calculated in each point of the images. These
features are combined into a new image using feature fusion.
For the TDSI module three modes of operation are identified. In
Mode M1 the detection is performed for each sensor separately.
Mode M2 performs sensor fusion by combining the images
obtained by feature-level-fusion from each sensor. Mode M3
determines the feature-level-fused images, using features from
all sensors (super-features).
Decision level fusion is used to combine the results of the two
parts of the algorithm.
Results show that the MTD module is very efficient when
moving targets are present. In the TDSI module, the different
sensors appear to be quite complementary: in some sequences
the infrared sensors give the best results while in others, the
visual sensor outperforms the infrared sensor.
The results show that the type of fusion that gives the best
performance varies greatly from sequence to sequence. The
performance is influenced by the presence of noise (in MS02),
the presence of a less performant sensor (in MS02, MS04 and
MS05), the type of scenario and the uniformity of the
background. Although we  do not pretend that there is a single
optimal fusion paradigm that can solve all possible problems in
all possible cases, for our test sequences,  we did find a way to
chose the optimal fusion method among the methods we tested,
based on the criteria that are given above.

This paper has presented some of the advantages and/or
disadvantages of using data fusion on different levels.
As a final conclusion one could state that different kinds of data
fusion have different advantages and disadvantages and are
therefore suited for solving different kinds of problems.
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