
Noise Reduction in Image Sequences with SparseTemporal SamplingDirk Borghys and Marc AcheroyRoyal Military Academy, Electrical Engineering Department,30, Av. de la Renaissance, 1040 Bruxelles, BELGIUMTel: 32-2-737.61.61, Fax: 32-2-737.61.63, Email: dirk@elec.rma.ac.be, http://www.elec.rma.ac.be/~dirkAbstract| In this paper, a method for noise reduc-tion in image sequences with sparse temporal samplingis proposed. The method combines motion compens-ation with an adaptive temporal low-pass �lter. Im-age sequences are mostly temporally non-stationary dueto sensor motion, the motion of individual objects inthe scene and objects which disappear, (re)appear orchang their orientation. The motion component can becompensated for by estimating the optic 
ow throughthe sequence. This allows to greatly reduce the non-stationarities. However, not all non-stationarities canbe accounted for by motion. Therefore, after motioncompensation an adaptive �lter is used to perform theactual noise reduction.Keywords| restoration, noise reduction, motioncompensation, image sequenceI. IntroductionImage sequences are used in a wide variety ofapplications: video communications, target detectionand tracking, object recognition, medical imaging,etc. . . These sequences are mostly corrupted by randomnoise at various stages. (generation, transmission or re-cording) Hence the importance of reducing this noise.A temporal low-pass �lter is useful to reduce thenoise in the image sequence but it will blur the non-stationary regions in the image. To preserve the movingregions during temporal smoothing, motion compensa-tion is used. For this purpose, the optic 
ow �eld isestimated between each pair of subsequent images ofthe sequence. For the estimation of optic 
ow a multi-resolution method is used which is based on conserva-tion constraints and a smoothness constraint. For theconservation constraints, a weighted sum of several im-age properties is used.Then, the images are warped using this 
ow �eld.After the warping, a temporal low-pass �lter would re-duce noise without blurring the moving regions in theimages. However, non-stationarities that are not dueto motion will still be blurred. Therefore an adaptiveversion of the temporal low-pass �lter is used.

II. Motion CompensationA. optic Flow EstimationThe method used for estimating the optic 
owbetween two images of a sequence is based on [1] andis divided into two parts. The �rst part is based onthe conservation of certain local measures. The secondpart exploits the continuity of the 
ow �eld using socalled neighbourhood constraints. These constraintsstate that a pixel in an image is more likely to movein a similar fashion as its neighbours.A.1 Conservation constraintLet Pk be the kth property that is conserved. Arectangle of dimensionw�h is de�ned around each pixelin the �rst image and we wish to know the position inthe second image that gives the most similar value forthe di�erent properties. We will therefore displace therectangle (by (u; v)) and each time calculate an errorfunction. This error function is de�ned as:Exy(u; v) = Pk 
kPw2i=�w2 Ph2j=�h2 �P im1k (x+ i; y + j)�P im2k (x+ i + u; y + j + v)�2 (1)
k allows to put di�erent weights on di�erent con-served properties. The following properties were used:� The grey value.� The norm of the gradient� The direction of the gradient.� Texture measures (Haralick parameters [2]).Using this de�nition of the error function, a re-sponse function is de�ned as:Rc(u; v) = exp[��Exy(u; v)] (2)This response function can be seen as the probab-ility density function of the velocity distribution due tothe conservation constraint. The displacement whichcorresponds best to the conservation constraint at agiven point (x; y) in the image can then be de�ned asthe weighted average:



uc(x; y) = PuPv Rc(u; v)uPuPvRc(u; v) (3)vc(x; y) = PuPv Rc(u; v)vPuPv Rc(u; v) (4)The summations are carried out over the range ofpossible velocities. Of course the displacement vectorfound by these expressions are not exact. If the errorsare independent and additive, a covariance matrix Sccan be associated to the estimates and used as a meas-ure of the con�dence in the estimate.Sc = � Ef(u� uc)2g Ef(u� uc)(v � vc)gEf(u� uc)(v � vc)g Ef(v � vc)2g �(5)with Efxg = PuPv Rc(u; v)xPuPv Rc(u; v) (6)A.2 Neighbourhood constraintSuppose that the velocity of each pixel is known ina small neighbourhood around the pixel under consid-eration. If all these velocities are plotted in u,v space,the central pixel is expected to have a velocity "sim-ilar" to that of its neighbours. In statistical terms, thevelocity of each neighbour can be thought of as beinga measurement of the velocity of the central pixel. Ofcourse these measures are not equally important, theyshould be weighted according to the distance from thecentral pixel, the larger the distance, the smaller theweight. Speci�cally a Gaussian mask was used. Theweight used for the neighbourhood constrint is calledRn(u; v). The neighbourhood constraint can then betreated in a similar fashion as the conservation con-straint, giving (u; v) as the estimated 
ow �eld and Snas the corresponding covariance matrix.A.3 Combination of both constraintsLet us now represent the velocities as 2�1 vectors.The true velocity at a pixel being U, the neighbourhoodestimation U and the conservation estimation Uc. Fromgeneral estimation theory follows that the estimationerror is given by:R R �(U � U)TS�1n (U � U )+(U � Uc)TS�1c (U � Uc)� dxdy (7)An iterative scheme is used to minimise this error.U0 = UcUk+1 = [S�1c + S�1n ]�1(S�1c Uc + S�1n Uk) (8)

A.4 The multi-scale approachIf a multi-resolution pyramid is constructed fromthe images, starting the optic 
ow calculations at thecoarsest level reduces the search space. This is espe-cially important if temporal sampling was only verysparse. Therefore two types of multi-resolution pyr-amids were examined, the Gaussian pyramid and theLaplacian pyramid ([3]). In [1] the grey levels in theLaplacian pyramid are used as conservation constraint.We obtained better results using a combination of greylevel, gradient and texture measures in a Gaussian pyr-amid.B. Warping of the imagesOnce the 
ow �eld is accurately estimated betweeneach pair of time-sequential images, the images can bewarped. This is done by bilinear interpolation.III. The adaptive temporal low-pass filterIf a simple temporal low-pass �lter is used toreduce the noise, non-stationarities in the image se-quences that can not be accounted for by motion willstill be blurred. Therefore, a locally adaptive versionof the temporal low-pass �lter ([4]) is used. If d is thenumber of images to be used in the noise reduction andCi(x; y) the spatial correlation between a small rect-angle centered at point (x,y) in image k and the corres-ponding rectangle in image k�i, the grey value Ĝk(x; y)at that position in the �ltered image number k is givenby: Ĝk(x; y) = h1�Pdi=1�i(x; y)iGk(x; y)+Pdi=1 �i(x; y)Gk�i(x0; y0) (9)�i(x; y) = � 1+Ci(x;y)4d if Ci(x; y) > Threshold0 otherwise (10)Ĝk(x; y) is the estimation of the kth image of thesequence, (x',y') are the coordinates in image k� i cor-responding to the coordinates (x,y) in image k. The sizeof the correlation window and the value of the thresholdare the two adjustable parameters of the �lter.IV. Results and discussionA. ResultsThe method was tested on a sequence acquiredfrom a moving car and which was sampled at about2 frames per second. Before processing, zero mean ad-ditive Gaussian noise with a standard deviation of 20was added. Figure 1 shows two time-sequential imagesof the sequence.To evaluate the results, the signal-to-noise ratiowas estimated before and after restoration. This wasdone at several values of the threshold and the correla-tion window size. The SNR was estimated as:



Fig. 1. Example of two time sequential imagesSNR = 10� log10 ��2max�2min � (11)�2max and �2min are respectively the largest andsmallest variance of the grey level distribution calcu-lated on a 10 by 10 square scanning the whole im-age. The error measures that were used to assess thequality of the restoration are the absolute mean error(AME), the root mean square error (RMSE) and themaximum absolute error (MAE). Also, the spatial cor-relation (SC) between both images was included in thecomparison. Table I shows the results for di�erent val-ues of the system parameters. Because the three errormeasurements (AME, RMSE and MAE) show a sim-ilar behaviour, only RMSE is included in the table.The column labeled MET gives the method used in thenoise reduction. The �rst two rows in the table presentmeasurements on the original image and the degradedimage respectively. "TA" means that temporal aver-age is applied on the raw images (without any motioncompensation). "MC" is temporal average after mo-tion compensation and "AF" is the result of the adapt-ive �lter. The depth , i.e. the number of subsequentimages considered in the restoration was eight in thisexperiment. The columns labeled "TH" and "CW" re-spectively show the threshold and correlation windowsize used for the adaptive �lter.Because of the threshold, only some pixels will bechanged during the restoration. In table II the percent-age of changed pixels for the test sequence is shown infunction of depth in the image sequence. Results are

MET TH CW SC RMSE SNRORIG 0 0 1 0 35.9DEGR 0 0 .96 18.9 12.9TA 0 0 .784 43.7 24.9MC 0 0 .945 22.8 25.6AF -1 5 .971 16.7 21.4AF -1 10 .971 16.6 21.2AF -1 20 .972 16.6 21.1AF -1 30 .972 16.6 21.1AF 0 5 .971 16.8 21.4AF 0 10 .971 16.8 21.2AF 0 20 .971 16.7 21.1AF 0 30 .971 16.6 21.1AF .5 5 .970 17.1 20.6AF .5 10 .970 17.1 20.8AF .5 20 .970 17.1 20.7AF .5 30 .970 17.1 20.8AF .9 5 .967 17.8 19.1AF .9 10 .967 18.2 16.4AF .9 20 .967 18.2 15.0AF .9 30 .967 18.2 14.9TABLE IOverview of the quality of the restoration
Root Mean Square Error vs. Threshold and Depth
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Fig. 2. In
uence of Threshold and Depth on RMSEgiven for di�erent values of the correlation window size(CW) and the threshold (TH).Figure 2 shows the Root Mean Square Error as afunction of both threshold and image sequence depth.In this plot values of di�erent sizes of the correlationwindow are shown simultaneously.B. DiscusionFrom table I can be inferred that a temporal av-eraging over some images of the sequence without anymotion compensation doubles the signal-to-noise ratio.However, error measurements between the original andthe "restored" image are very poor. This shows thatin evaluating a noise reduction technique used for im-age restoration, measurements of SNR and error ratesneed both to be taken into account. For the temporalaveraging after motion compensation but without the



TH Depth CW = 5 CW = 10 CW = 20�1 2 91.2 91.2 91.23 80.3 80.3 80.34 69.4 69.5 69.45 64.2 64.3 64.36 56.3 56.3 56.47 50.9 51.0 51.08 48.2 48.3 48.30 2 85.1 88.8 90.13 70.8 75.4 78.44 56.8 59.8 62.25 49.4 52.4 55.06 42.3 44.5 47.37 37.4 38.2 40.68 35.3 36.9 39.0:5 2 72.5 78.2 83.33 58.2 62.3 69.74 43.2 42.5 43.25 37.0 34.3 32.46 32.1 29.9 27.77 26.0 24.2 22.18 25.3 24.1 21.0:9 2 43.6 38.4 34.43 33.1 28.8 25.54 22.8 17.3 14.15 20.9 15.9 10.96 18.2 13.8 9.97 14.5 10.0 6.08 13.4 8.7 5.8TABLE IIPercentage of points considered in the restoration as afunction of the depth in the image sequence fordifferent values of threshold (TH) and correlationwindow size (CW)adaptive �lter, the SNR is still doubled and spatial cor-relation is comparable to the values of the degradedimage. However, the RMSE is still larger between therestored image and the original than between the de-graded image and the original. Using the adaptive tem-poral average improves the SNR (by a factor 1.6) andspatial correlation while reducing the error rate.Figure 2 shows that using more than four sub-sequent images in the adaptive �lter does not reduceRMSE any further. This is probably due to the lowcorrelation found in the adaptive �lter as images getfurther apart in the sequence.V. ConclusionA multi-resolution optic 
ow estimation methodwas developed to compensate for motion in image se-quences with sparse temporal sampling. After motioncompensation an adaptive temporal lowpass �lter wasused to reduce the noise in the sequence while pre-serving the non-stationary parts of the images. The al-gorithm was tested on an image sequence acquired froma vehicle moving through a small town. The images

were degraded by zero-mean Gaussian noise. Results ofthe adaptive temporal lowpass �lter show an increaseof the signal-to-noise ratio while improving spatial cor-relation and error rates between the restored image andthe original. References[1] A. Singh, Optic Flow: A Uni�ed Perspective. Washington:IEEE Computer Society Press, 1991.[2] R. Haralick, \Statistical and structural approaches to tex-ture," Proc. IEEE, vol. 65, no. 5, pp. 786{804, 1979.[3] P. Burt, \Multiresolution techniques for image representa-tion, analysis and 'smart' transmission," SPIE Visual Com-munications and Image Processing, vol. 1199, pp. 2{15, 1989.[4] R. Kleihorst, R. Langendijk, and J. Biemond, \Noise re-duction of image sequences using motion compensation andsignal decomposition," IEEE-IP, vol. 4, no. 3, pp. 274{284,1995.


