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Abstract— In this paper, a method for noise reduc-
tion in image sequences with sparse temporal sampling
is proposed. The method combines motion compens-
ation with an adaptive temporal low-pass filter. Im-
age sequences are mostly temporally non-stationary due
to sensor motion, the motion of individual objects in
the scene and objects which disappear, (re)appear or
chang their orientation. The motion component can be
compensated for by estimating the optic flow through
the sequence. This allows to greatly reduce the non-
stationarities. However, not all non-stationarities can
be accounted for by motion. Therefore, after motion
compensation an adaptive filter is used to perform the
actual noise reduction.
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I. INTRODUCTION

Image sequences are used in a wide variety of
applications: video communications, target detection
and tracking, object recognition, medical imaging,
etc. .. These sequences are mostly corrupted by random
noise at various stages. (generation, transmission or re-
cording) Hence the importance of reducing this noise.

A temporal low-pass filter is useful to reduce the
noise in the image sequence but 1t will blur the non-
stationary regions in the image. To preserve the moving
regions during temporal smoothing, motion compensa-
tion is used. For this purpose, the optic flow field is
estimated between each pair of subsequent images of
the sequence. For the estimation of optic flow a multi-
resolution method is used which is based on conserva-
tion constraints and a smoothness constraint. For the
conservation constraints, a weighted sum of several im-
age properties is used.

Then, the images are warped using this flow field.
After the warping, a temporal low-pass filter would re-
duce noise without blurring the moving regions in the
images. However, non-stationarities that are not due
to motion will still be blurred. Therefore an adaptive
version of the temporal low-pass filter is used.

II. MoTioN COMPENSATION
A. optic Flow Estimation

The method used for estimating the optic flow
between two images of a sequence is based on [1] and
is divided into two parts. The first part is based on
the conservation of certain local measures. The second
part exploits the continuity of the flow field using so
called neighbourhood constraints. These constraints
state that a pixel in an image is more likely to move
in a similar fashion as its neighbours.

A.1 Conservation constraint

Let P be the k** property that is conserved. A
rectangle of dimension wx h is defined around each pixel
in the first image and we wish to know the position in
the second image that gives the most similar value for
the different properties. We will therefore displace the
rectangle (by (u,v)) and each time calculate an error
function. This error function is defined as:
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v allows to put different weights on different con-
served properties. The following properties were used:
o The grey value.
¢ The norm of the gradient
o The direction of the gradient.
+ Texture measures (Haralick parameters [2]).

Using this definition of the error function, a re-
sponse function is defined as:

R.(u,v) = exp[—KkEqy(u,v)] (2)

This response function can be seen as the probab-
ility density function of the velocity distribution due to
the conservation constraint. The displacement which
corresponds best to the conservation constraint at a
given point (#,y) in the image can then be defined as
the weighted average:



The summations are carried out over the range of
possible velocities. Of course the displacement vector
found by these expressions are not exact. If the errors
are independent and additive, a covariance matrix S,
can be associated to the estimates and used as a meas-
ure of the confidence in the estimate.
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A .2 Neighbourhood constraint
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Suppose that the velocity of each pixel is known in
a small neighbourhood around the pixel under consid-
eration. If all these velocities are plotted in u,v space,
the central pixel is expected to have a velocity ”sim-
ilar” to that of its neighbours. In statistical terms, the
velocity of each neighbour can be thought of as being
a measurement of the velocity of the central pixel. Of
course these measures are not equally important, they
should be weighted according to the distance from the
central pixel, the larger the distance, the smaller the
weight. Specifically a Gaussian mask was used. The
weight used for the neighbourhood constrint is called
Ry (u,v). The neighbourhood constraint can then be
treated in a similar fashion as the conservation con-
straint, giving (%, 7) as the estimated flow field and S,
as the corresponding covariance matrix.

A.3 Combination of both constraints

Let us now represent the velocities as 2 x 1 vectors.
The true velocity at a pixel being U, the neighbourhood
estimation U and the conservation estimation U/,. From
general estimation theory follows that the estimation
error 1s given by:
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An iterative scheme 1s used to minimise this error.
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A.4 The multi-scale approach

If a multi-resolution pyramid is constructed from
the images, starting the optic flow calculations at the
coarsest level reduces the search space. This 1s espe-
cially important if temporal sampling was only very
sparse. Therefore two types of multi-resolution pyr-
amids were examined, the Gaussian pyramid and the
Laplacian pyramid ([3]). In [1] the grey levels in the
Laplacian pyramid are used as conservation constraint.
We obtained better results using a combination of grey
level, gradient and texture measures in a (Gaussian pyr-
amid.

B. Warping of the images

Once the flow field is accurately estimated between
each pair of time-sequential images, the images can be
warped. This is done by bilinear interpolation.

III. THE ADAPTIVE TEMPORAL LOW-PASS FILTER

If a simple temporal low-pass filter is used to
reduce the noise, non-stationarities in the image se-
quences that can not be accounted for by motion will
still be blurred. Therefore, a locally adaptive version
of the temporal low-pass filter ([4]) is used. If d is the
number of images to be used in the noise reduction and
Ci(z,y) the spatial correlation between a small rect-
angle centered at point (x,y) in image k and the corres-
ponding rectangle in image k—¢, the grey value G’k(x, Y)
at that position in the filtered image number k is given

by:
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G’k(x, y) is the estimation of the k'® image of the
sequence, (x’,y’) are the coordinates in image k — i cor-
responding to the coordinates (x,y) in image k. The size
of the correlation window and the value of the threshold
are the two adjustable parameters of the filter.

IV. RESULTS AND DISCUSSION
A. Results

The method was tested on a sequence acquired
from a moving car and which was sampled at about
2 frames per second. Before processing, zero mean ad-
ditive Gaussian noise with a standard deviation of 20
was added. Figure 1 shows two time-sequential images
of the sequence.

To evaluate the results, the signal-to-noise ratio
was estimated before and after restoration. This was
done at several values of the threshold and the correla-
tion window size. The SNR was estimated as:
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02 .. and 2. are respectively the largest and
smallest variance of the grey level distribution calcu-
lated on a 10 by 10 square scanning the whole im-
age. The error measures that were used to assess the
quality of the restoration are the absolute mean error
(AME), the root mean square error (RMSE) and the
maximum absolute error (MAE). Also, the spatial cor-
relation (SC) between both images was included in the
comparison. Table I shows the results for different val-
ues of the system parameters. Because the three error
measurements (AME, RMSE and MAE) show a sim-
ilar behaviour, only RMSE is included in the table.
The column labeled MET gives the method used in the
noise reduction. The first two rows in the table present
measurements on the original image and the degraded
image respectively. ”TA” means that temporal aver-
age is applied on the raw images (without any motion
compensation). "MC” is temporal average after mo-
tion compensation and " AF” is the result of the adapt-
ive filter. The depth , i.e. the number of subsequent
images considered in the restoration was eight in this
experiment. The columns labeled ”TH” and "CW?” re-
spectively show the threshold and correlation window
size used for the adaptive filter.

Because of the threshold, only some pixels will be
changed during the restoration. In table IT the percent-
age of changed pixels for the test sequence is shown in
function of depth in the image sequence. Results are

MET | TH | CW | SC | RMSE | SNR
ORIG 0 0 1 0 35.9
DEGR | 0 0 .96 18.9 12.9
TA 0 0 784 | 43.7 24.9
MC 0 0 945 22.8 25.6
AF -1 5 971 16.7 214
AF -1 10 | 971 16.6 21.2
AF -1 20 | 972 16.6 21.1
AF -1 30 | 972 16.6 21.1
AF 0 5 971 16.8 214
AF 0 10 | 971 16.8 21.2
AF 0 20 | 971 16.7 21.1
AF 0 30 | 971 16.6 21.1
AF D 5 970 17.1 20.6
AF D 10 | .970 17.1 20.8
AF D 20 | .970 17.1 20.7
AF s} 30 | .970 17.1 20.8
AF 9 5 967 17.8 19.1
AF RY 10 | .967 18.2 16.4
AF RY 20 | .967 18.2 15.0
AF 9 30 | .967 18.2 14.9
TABLE 1

OVERVIEW OF THE QUALITY OF THE RESTORATION

Root Mean Square Error vs. Threshold and Depth

Different CW sizes —-—

Threshold

Fig. 2. Influence of Threshold and Depth on RMSE

given for different values of the correlation window size
(CW) and the threshold (TH).

Figure 2 shows the Root Mean Square Error as a
function of both threshold and image sequence depth.
In this plot values of different sizes of the correlation
window are shown simultaneously.

B. Discusion

From table I can be inferred that a temporal av-
eraging over some images of the sequence without any
motion compensation doubles the signal-to-noise ratio.
However, error measurements between the original and
the ”restored” image are very poor. This shows that
in evaluating a noise reduction technique used for im-
age restoration, measurements of SNR and error rates
need both to be taken into account. For the temporal
averaging after motion compensation but without the



TH | Depth | CW =5 | CW =10 | CW = 20

-1 2 91.2 91.2 91.2
3 80.3 80.3 80.3
4 69.4 69.5 69.4
5 64.2 64.3 64.3
6 56.3 56.3 56.4
7 50.9 51.0 51.0
8 48.2 48.3 48.3

0 2 85.1 88.8 90.1
3 70.8 75.4 78.4
4 56.8 99.8 62.2
5 49.4 52.4 55.0
6 42.3 44.5 47.3
7 37.4 38.2 40.6
8 35.3 36.9 39.0

5 2 72.5 78.2 83.3
3 58.2 62.3 69.7
4 43.2 42.5 43.2
5 37.0 34.3 32.4
6 32.1 29.9 277
7 26.0 24.2 22.1
8 25.3 24.1 21.0

9 2 43.6 38.4 34.4
3 33.1 28.8 25.5
4 22.8 17.3 14.1
5 20.9 15.9 10.9
6 18.2 13.8 9.9
7 14.5 10.0 6.0
8 13.4 8.7 5.8

TABLE II

PERCENTAGE OF POINTS CONSIDERED IN THE RESTORATION AS A
FUNCTION OF THE DEPTH IN THE IMAGE SEQUENCE FOR
DIFFERENT VALUES OF THRESHOLD (TH) AND CORRELATION
WINDOW SIZE (CW)

adaptive filter, the SNR 1s still doubled and spatial cor-
relation is comparable to the values of the degraded
image. However, the RMSE is still larger between the
restored image and the original than between the de-
graded image and the original. Using the adaptive tem-
poral average improves the SNR (by a factor 1.6) and
spatial correlation while reducing the error rate.

Figure 2 shows that using more than four sub-
sequent images in the adaptive filter does not reduce
RMSE any further. This is probably due to the low
correlation found in the adaptive filter as images get
further apart in the sequence.

V. CONCLUSION

A multi-resolution optic flow estimation method
was developed to compensate for motion in image se-
quences with sparse temporal sampling. After motion
compensation an adaptive temporal lowpass filter was
used to reduce the noise in the sequence while pre-
serving the non-stationary parts of the images. The al-
gorithm was tested on an image sequence acquired from
a vehicle moving through a small town. The images

were degraded by zero-mean Gaussian noise. Results of
the adaptive temporal lowpass filter show an increase
of the signal-to-noise ratio while improving spatial cor-
relation and error rates between the restored image and
the original.
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