Appendix A

Simulation of SAR images

A.1 Simulation of Spatially Correlated Speckle

The point spread function (PSF) of the SAR system induces a spatial correlation in the
speckle in uniform regions. In order to simulate speckle with the same characteristics as
the speckle found in the SAR image we therefore also need to simulate this correlation
effect. If the PSF of the system is known, the complex speckle image can be convolved
with this PSF. If the PSF is not known we can simulate correlated speckle in the following
manner.

The underlying hypotheses are that the speckle is fully-developed and that it is white;
i.e. that its spectral density is constant. We start by finding a region with fully-developed
speckle in the SLC SAR image. Of this region an FFT is calculated along x and y direction.
This yields the spectral density of the correlated speckle (S¢g) along x and y-direction,
for which [23]:

Scse = Svs.HZ, (A1)
Scsy = SUS,yHg. ’

with Sy s . the spectral density of the uncorrelated speckle (which is a constant for white
speckle), Scs,y the spectral density of correlated speckle and H the transfer function of
the SAR system.

From this, H can be found, upto a constant, and a 2D filter in the spectral domain can
be constructed. Normalising this filter in energy, i.e. ensuring that the sum of the squared
coefficients is equal to one, gives the transfer function of the system.

This can now be used to generate correlated speckle. First uncorrelated speckle is
generated with a variance of 0.5. This is done by random sampling of a normal distribution
with zero mean and variance=0.5.

In this way the real and imaginary component of an image with uncorrelated speckle is
generated.

These images are transformed into the fourier domain and both are pixel-wise multiplied
with the transfer function.

Inverse FFT gives the two components of the complex correlated speckle image. This
is normalised by dividing through the standard deviation.
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232 APPENDIX A. SIMULATION OF SAR IMAGES

An image can now be generated by multiplying the speckle image with a given ideal
image (i.e. consisting of patches of constant value corresponding the wanted radar reflec-
tivity).

Note that the method described above is only correct in uniform regions of the image.
If the ideal image contains edges, the PSF of the SAR image will also smooth these
edges and therefore the ideal image has to be convolved with the PSF before the spatially
correlated speckle is added to it. However we only used the procedure described above to
generate “uniform” images to determine the probability of false alarms as a function of
the threshold and therefore the method is valid. Only in the case where the ROC curves
as a function of contrast level in simulated images are determined (see e.g. fig 5.18), the
procedure is, strictly speaking, not valid. However, because of the sub-sampling in the
scanning rectangles that is used in the various edge detectors, the influence of the error is
negligable.

A.2 Introducing Interchannel Correlation

In order to introduce interchannel correlation, the random generation step for creating
the real and imaginary components of uncorrelated speckle must be linked between the
different channels (different polarisations).

Therefore we start by generating a real image of the first channel and from this all
other channels are determined by introducing a pixel-wise dependency into the random
generation. In each pixel the random generation depends on the corresponding pixel in
the start image, on the correlation between the two images and on their respective radar
reflectivity. If o; is the standard deviation of the speckle in the start image and C(i, j) the
inter-channel correlation coefficient between channels i and j then the image of channel j

can be derived as:
o = 1 =Cjxai (A.2)

,u](x,y) = C’l,j * %-ZL: * Iml(xay)

Pick a value randomly from a normal distribution with average u;(z,y) and standard
deviation ¢;. The result is the value of image j at position x,y: Im;(z,y).



Appendix B

Pulse Compression

To understand how a matched filter can be used to compress a pulse waveform we will
first derive the expression of a matched filter and then apply it to a frequency modulated
signal.

B.1 The Matched Filter

The matched filter is a linear filter that maximizes the signal to noise ratio at its output
stage. The matched filter is designed to filter a signal that was corrupted by additive
noise. In fig. B.1 s(t) is the original signal and n(t) is the noise (with mean power density
N, ). The noise is added to the signal to yield the corrupted signal x(t). The idea is to
design a filter with an impulse response h(t) such that, applying this filter to x(t) gives a
new signal y(t) that is optimal in some sense.

n(t)

S(t) 69 X(t) h(t) y(t)
H(f)

Figure B.1: Linear Filter

The effect of applying the linear filter h(t) to the corrupted signal x(t) is a convolution
in the time-domain given by:

+o0
y(t) = o(t) % h(t) = / #(r)h(t — 7)dr (B.1)
The frequency response of a linear filter h(t) is the Fourier transform of h(t):
+oo
H(f) = / h(t)eap(—i2n ft)dt (B.2)
— 00
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234 APPENDIX B. PULSE COMPRESSION

The inverse transform is:

h(t) = / " H(f)eaplizn fr)df (B.3)

-0

It then follows from the properties of the Fourier transform that:

+00
y(t) = X(f)H(f)exp(i2n ft)df (B-4)
—0o0
where X(f) is the Fourier transform of x(t). As said previously the matched filter
maximizes the signal to noise ratio (SNR) at the output stage. We define the SNR as:

SNR — S _ Peak Output Signal Power
N Average Noise Power

(B.5)

Suppose that the maximal peak output level due to the signal alone occurs at some time
to- Then:

+o00
S=lulto) P=I [ SU)H(ewpliznfio)df | (B.6)

Now suppose that the noise is white over a bandwidth (-W,W) with a mean power
density N,. The average noise power is:

N=E[lw) P =Bl [ e - nr P (B.7)

—oQ

For a white noise this can be shown to result in:

=2 / )P df (B.8)

Thus:

SNR = S _ | 22 S(f)H(f)exp(i2n ft)df |2

N S [TV H(f) 2 df

By using Schwarz’ inequality for integrals we obtain for the nominator:

| S5 S(HH(f)exp(i2nftydf 2 < [T | S(f)emp(i2nft) > df (15| H(f) |* df
= [T21S(f) 12 df [7X | H(f) |? df
(B.10)

This gives an upper limit for the nominator and thus also for the SNR. The maximal
SNR that can be reached is thus:

+oo
_ 2
SN Bas = 5 / )P df (B.11)
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The integral in this expression is the energy of the signal. The maximal signal to noise
ratio that can be obtained thus only depends on the signal energy and the noise power
density and is independent of the waveform that is used.

The maximum SNR (the equality in equation B.10) is reached when:

H(f) = mS*(f)exp(—i2m fto) (B.12)
where m is an arbitrary constant. The equivalent equation in the time-domain is

h(t) = mS* (to — 1) (B.13)

The impulse response of the matched filter is thus a time-reversed version of the complex
conjugate of the input signal s(t).

B.2 Matched Filter for the Chirp

Let us now apply this to the chirp as defined in eq. 2.4. The matched filter for the chirp
is thus:

h(t) = mAezp |—i2n ( Folto —1) + %a(to _ t)2>] (B.14)

The output of the matched filter in the presence of the input signal alone (no noise) is
thus:

ys(t) = [T p(r)h(t — T)dr

sett():Oa,ndA:%
- +7 : 1.2 _; _ 1 _ 12
=A[ . exp [z27r(f07' + zar )] erp [ i2m(fo(r — 1) + 50(T — 1) )] dr
2

™
- Afjﬁ exp [ﬂ”(fot + %On'2 - %a(T — t)Q)} dr
2

f B.1
= Afj—ﬁ exp ['i27r(orrt + fot — %atQ)] dr (B.15)
2

Tp

= Aezp [z’27r(f0t — %atQ] fj—r_ﬁ Aesp [i2rart] dr
2

= Acap [i2n(fot — Sot?] Tniratm)

Tat

= Arpexp [i27r(f0t - %atZ] sinc(raty)

The result is thus a replica of the emitted signal but windowed by a sinc function. The
sinc function can thus be seen as limiting the actual pulse duration. The pulse duration
Terf after demodulation is by convention set to the time between the two first zeros of the
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sinc which is 7.ry = 1/aTp. ap, is the bandwidth B, of the modulation that was applied,
thus 7.5y = 1/B,.



Appendix C

Correction Factors for the Edge
Detectors

C.1 Variance of the Mean

In the contour detector described in section 5.3.1 the variance of the mean is deduced
from the variance of the samples. For spatially correlated observations within the sample,
a correction factor is introduced in eq. 5.15. In the following eq. 5.15 is proven.

Lets start with the 1-dimensional case. Suppose we have a 1D signal from which a
part is digitised to give a set of n points zi,...,z, (observations) which correspond to
succesive values of the signal. The observations are spatially (or temporally) correlated
and we would like to determine how this correlation affects the variance of the mean of
the samples.

The variance (standard error) of the mean is given by:

var(z) = E{z —u)*
= E{%Zzn:ﬁ% —M}Q

= EIZE {(Ch 20)? — 2np 0 @i + n’p?}

(C.1)
=B {Z?zl of + 3P E;‘L:I,jyéi(wimj)} —n?p?
=z [ i E{af + X0 Y B (i)} - nQ/B]
If the observations are not correlated E(z;x;) = E(z;)E(z;) and thus:
var(T) = n% [nE(x?) +n(n — 1)p? — n?u?
~ L[B@) - 7] ©2)
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238 APPENDIX C. CORRECTION FACTORS FOR THE EDGE DETECTORS

This is equal to the variance of the samples divided by n:

var(z) = E{z—u}*

= % i=1 (i — H)2
1 n

= 5 Xi1 (2] — 2uwi + p?)

n
= L5 ) - 2

= E(2?) — p°

This well known result for independent observations is not valid when the observations
are correlated. In that case the term 7', 3°7 , ;; E{(z;iz;)} can be evaluated as fol-
lows: The spatial correlation coefficient is defined as a function of the lag between the
observations:

(C.4)
and

E{(zi — p)(@i—k —p)} = E{zizi—g} — pE{zi} — pE {z;} + p°

= E{ziz; 1} —p° (€5)

and thus E {z;z; 1} — p® = p(k)var(z)
It is thus possible to express the second term in the last line of eqs. C.1 as a function
of the correlation coefficients at different lags by regrouping the terms (as a function of

the lags).

Note that there are n — 4 terms at lag +4 (and the same number at —i) in the sum (see
fig. C.1).

width of window = n pixels

lag=+1 | b b b b b A P P Y ot erms

n-2 terms

Figure C.1: Vectorised edges
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Y Yo B{(miz))} =Tk E{zwia} + 7 E{zimia}
+ 303 BE({mimi o} + S0 E{miziyo}
+ iy B({mizi—a} + X7 E{xiwiia}
+... (C.6)

= Y7 [2(n — i) (p(i)var(z) + p?)]
= n(n — 1)p? + var(z) Zi";f [2(n —14)(p(9)]

Here, the hypothesis in the penultimate step was that p(i) = p(—i). Noting that
n?p? = np? 4+ n(n — 1)p? we can now write:

var(@) = & [Sh B {2} — mp? + iy Xy g B {(mim)} — nin — 1)pi?]
= L [B{a?) — 2 + 28 5 2 — ) ((0)] ©7)

= 20 {p(0) + X5 20 = (o)) }

because E(1?) — u? = p(0)var(z).

In case of a uni-variate two-dimensional signal, the observations are the elements of
a rectangular window. For sampling in a rectangular window with width W and height
H one finds in a similar way as above, by groupng the cross-terms as a funcion the 2D
correlation function that:

var(@) =" {p0) + VT L 20 - )0 - 6]} (©8)

In eq. 5.15 the hypothesis is made that the spatial correlation along azimuth and range
direction are independent:

p(i,7) = pu(i)pv(4) (C.9)

in which pg and py are the spatial correlation function in horizontal and vertical direction
respectively.

Please note that the correction factor depends on the orientation of the windows. For
rectangular windows with the sides along the x and y-axes in the image, the correction
factor derived above applies. If the windows are rotated over an angle 8, the coordinates
of the correlation function need to be rotated too:

po(i,7) = pr,o(0)pv,e(j) = pua(i cosf —j sind)py (i sinf + j cosb) (C.10)

The spatial correlation in a SAR image is due to two factors. The first is the effect
of the impulse response of the SAR procesing. For this term the correlation in azimuth
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and range are independent and this correlation depends only on the SAR system and
is independent of the position in the image. However, the second factor in the spatial
correlation of a SAR image is caused by texture, e.g. a pattern in the scattering of the
terrain. It is therefore only possible to find a correction factor for the variance of means in
non-textured regions. A contour detector incorporating the correction factor would thus
necessarily still give more false alarms in textured regions because the correction will still
be too small. Please note that an approach based on subsampling will have the same
problem. However, if random subsampling is used, the probability of finding false alarms
at neighbouring positions should be lower than when the correction factor is explicitely
used in the detector and no subsampling is applied. On the other hand, in regions without
texture, applying the correction factor would avoid the need for subsampling and thus
enable one to use smaller scanning windows.

C.2 Covariance of the Mean

In the Hotellings test and the Levene test the covariance matrix between the different
channels is used. We have seen that the obtained statistics are too large. In fact, the
Hotellings test is based on the hypothesis of (spatially) independent observations and the
fact that, in that case, the covariance of the mean is equal to that of the samples divided
by the sample size. In the following the error that is made by neglecting the spatial
correlation between the observations is determined. Therefore the influence of the spatial
correlation on the covariance of the mean is determined. Lets determine an expression for
each element of the covariance matrix. Let P and Q denote two channels (e.g. spectral
bands or polarisations), the covariance of the mean between channels P and Q is:

cov(zp,7q) = E{(TP — np)(Tq — ne)}’
= E{(X Tz — pup)(E L1 i — ) }
= BB { Y 20,p7iq + Tiiy Yo ji(@ip2i0) |
—aup Xy B{ziq} — puo et E{zip} + pppq
=0 {% iy B{mipriqri}y — np? + 5 iy Y0 i B{mipzj 0} — nin — 1)u2}

(C.11)

The two first terms of the sum are the covariance matrix between the two channels P
and Q. If the correlation between the two channels at different spatial positions is zero the
two last terms disappear. However, when the spatial correlation in the image is different
from zero at lags different from zero, the last terms do not disappear. They can be written
in function of a “multi-channel spatial correlation” defined as:
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E{(zi,p—pr)(@i—k,o—1Q)}
. P =
p(k; P,Q) VE{(@ip—1p) }/E{(zi,p—upr)’}

_ B{@i,p—pr)(@i-r.o—1e)} (C.12)

- opOoQ

and in a similar way as eq. C.5 it can be shown that:

E{(zi,p — pp)(@i-k,@ — 1Q)} = E{ipzi—kq} — pPLQ (C.13)

If the spatial correlation is independent of the interchannel correlation i.e. p(k; P, Q) =
p(k)p(P, Q) the two last terms in eq. C.11 can be written as:

% Yt Z}Ll,#i E{xi,PﬂUj,Q} —n(n— 1)M2 =0opoQ 2?511 2(1 - %)ﬂ(i)ﬂ(Pa Q) (C.14)

Thus finally, noting that cov(zp,zq) = opogp(P, Q), we get:

cov(7p,7q) = L1 4 5 nlo(1 — )p(i)| (C.15)

For the covariance of the mean calculated in a rectangle in a two-dimensional signal we
get:

— : -1 -1 ' RN
cov(7p,7q) = I [1 4 oty o1 — (1 - £)p(i, 5)] (C.16)

and thus we obtain the same correction factor as for the variance of mean, but only if
the spatial and interchannel correlations are independent. Again this correction factor is
only usefull in non-textured regions.

C.3 Correction Factors for the Contour Detectors

For the contour detector based on the Student Test, described in 5.3.1, the correction
factor is the square root of the correction factor for the variance. As this detector is
applied on the log-intensity image, the average autocorrelation function for log-intensity
images is used to calculate the correction factor. For the Hottelings test discussed in
5.4.2 the correction factor is the one for the co-variance matrix, also calculated using the
autocorrelation function for log-intensity images. The Levene test (5.4.1) was applied to
SLC images, so the correction factor should be determined on the SLC images.

The correction factors were determined based on the spatial correlation functions that
were found in 4.2.1 and given in table 4.2 for the SLC image and table 4.3 for the log-
intensity image. The results are given in table C.1 for horizontally and vertically oriented
51 x 11 windows.
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Image Type HH HV 'A% Average

Hor. Vert. | Hor. Vert. | Hor. Vert. | Hor. Vert.
Complex Image 2.66 3.09 | 2.68 3.13 | 246 296 | 2.60 3.06

Log-Intensity Image | 4.54 4.81 | 4.74 4.97 | 5.07 5.32 | 4.78 5.03

Table C.1: Correction factors for the complex and the Log-Int image

These values can be used to find the theoretical 5 and 1 % false alarm thresholds in
uniform regions for the 3 detectors. This is done by multiplying the theoretical threshold
with the appropriate correction factor.

For example for the Student test based detector the test statistic follows a N (0,1)
distribution. The 5 % false alarms threshold for uncorrelated observations is thus 1.96.
As the test is applied to the log-intensity image and the correction factor is the square
root of the correction factor for the variance of the means, this value has to be multiplied
with 1/4.54 for horizontal windows and 1/4.81 for vertical windows.

In table C.2 the thresholds are given for vertically and horizontally oriented 51 x 11
windows. For the Student test based detector the values are given for HH polarisation.

Detector 5 % FA Threshold | 1 % FA Threshold
Hor. Vert. Hor. Vert.
Student Test based Detector | 4.17 4.29 5.47 5.63
Levene Test 5.47 6.44 7.32 8.62
Hotellings Test 12.49 13.14 18.15 19.10

Table C.2: Theoretical 5% and 1% false alarm thresholds taking into account spatial
correlation

The correction factors presented above are for 100 % sampling, i.e. when all the pixels
in the 11 x 51 window are used. It is not posssible to calculate a correction factor for
random sub-sampling because it is not possible to know a priori which pixels will be
chosen in the scanning rectangles. However, for sampling on a fixed grid it is possible to
calculate a correction factor by using equations C.8 and C.16 and setting all element of
the autocorrelation function to zero except those that correspond to the grid points of the
fixed grid.

For the fixed grid defined in fig. 5.12 and using the average autocorrelaton functions
presented in 4.2 for the SLC image and table 4.3 for the log-intensity image we get the
correction factors given in table C.3 for 51 x 11 sampling windows.

Image Type HH HV \AY% Average

Hor. Vert. | Hor. Vert. | Hor. Vert. | Hor. Vert.
Complex Image 1.11 1.13 | 1.12  1.14 | 1.13 1.16 | 1.12 1.15

Log-Intensity Image | 1.038 1.047 | 1.033 1.040 | 1.058 1.069 | 1.044 1.052

Table C.3: Correction factors for the complex and the Log-Int image for Sampling on a
Fixed Grid



Appendix D

Implementation of the Fuzzy
Classification Method

In sect. 6.2.3 a fuzzy rule-based system was introduced to improve the results of the Cloude
decomposition and make the method more easily adaptive to different SAR system. The
approach is based on the work of M. Hellmann [63, 60].

In the proposed system the rules are a priori fixed for a given type of vegetation or
landcover and a given radar wavelength. The rules are based on physical properties. The
actual boundaries of the membership functions depend on more specific properties of the
SAR system and need to be adjusted for each type of SAR system.

An image of a given SAR sensor (and a given polarimetric calibration method) should
be used to find the boundaries for the membership functions for the different parameters.
This is done by delimiting an example of each class to be classified. The values of the
different parameters for the different learning objects are represented in fig. D.1 to fig. D.3
as two-dimensional scatter-graphs.
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Figure D.1: Scatter graph for H and
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Figure D.2: Scatter graph for A; and Anisotropy
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Figure D.3: Entropy H vs. Interferometric Coherence in the set of HH images

These graphs are used to define the borders of the membership functions. The obtained
fuzzy membership functions for the different characteristics used in the classification are
represented in fig. D.4. Note that the anisotropy, entropy and coherence were all linearly
rescaled from their range of possible value to the interval [0..255]. The eigenvalue A\ was
logarithmically rescaled from the interval [minimum..mazimum] found in the image. It
some physical range of possible values for A could be defined, it would be better to use
that range in the rescaling. Note that the membership function shown in the figure were
derived from image 2 using.
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Figure D.4: Input membership functions
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Table D.1 presents an overview of the rules used for the fuzzy classification method.
The table presents the rules that are applied if all parameters are used. Note that when
only a subset of parameters is used, some types of objects become indistinguishable. In
that case the rule is assigned to the most important class. This is for example the case
for forests and shadows. Only A; allows to distinguish these two classes. In case A; is not
used for the classification, shadows will be classified as forests.

A class “reflectors” was added to show that it is possible to detect the trihedral corner
reflectors in the scene. Note that one of the field also has the characteristics of a trihedral
corner reflector. This is also true for some parts of the roofs of buildings. A possible
explanation is the presence of “co-operative specular reflectors”, i.e. surfaces that are
oriented perpendicular to the incoming radar beam.

Object Type A Entropy « A1 r Color
Forests VL-L VH L-H H VL-M | dark green
Buildings Any VL H-VH | VH | M-VH | red

L-VH L H-VH | VH | M-VH | red
Fields L-H L-H VL-H | L-M L-H | green
Main Roads | L-M L-H VL-L | VL VL-L | grey
Shadows VL-L VH L-H L VL-M | blue
Reflectors M-H VL VL |L-VH | VH | Purple

Table D.1: Rules used for the fuzzy classification

The fuzzy classification gives a membership in each pixel of the image for each type of
landcover that was defined. A majority rule is then applied to give the final classification
result. For a given pixel the majority rule calculates the sum of membership values for
each object type in a neighbourhood of that pixel. The pixel is then classified as belonging
to the object type that corresponds to the highest sum. We used neighbourhood of 3 x 3
pixels in the majority rule.



