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Abstract— In this paper an approach to automatically de-
tect built-up areas in high-resolution polarimetric SAR im-
ages is presented. First a set of features, mostly based on
statistical properties of built-up areas in SAR images is de-
fined. One feature is based on the isotropic spatial distri-
bution of small uniform regions within agglomerations and
avoids false alarms due to the presence of edges which the
other features would introduce. The features are fused us-
ing logistic regression. Results of applying the method on an
L-Band fully-polarised SAR image with a spatial resolution
of about 1 m are shown.
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I. INTRODUCTION

In this paper an approach to automatically detect built-
up areas in polarimetric SAR images is presented.

For a wide range of applications such as the study of the
population density, the study of risks, planning of road net-
works, surveillance of the urban pressure on rural regions,...
it is necessary to have an up-to-date overview of the lo-
cation and the extent of the built-up areas. The fastest
and cheapest way to obtain these updates is by extracting
the information automatically from remote sensing data.
Many papers describing the detection of built-up areas on
visual or infrared satellite images (e.g. SPOT) have been
published. At this moment, the most dramatic changes
in the demographical situation occur in sub-tropical and
tropical regions (mainly in Africa and Asia) where the cli-
mate (clouds) makes it difficult to use optical imagery for
remote sensing applications. Detection of agglomerations
is also important for registering images with maps, which
is the first step in automatic cartography applications or
change detection [1].

This paper will therefore focus on the detection of vil-
lages and built-up areas on SAR images as SAR can be
acquired independent of the weather conditions. In par-
ticular a method is presented to detect built-up areas in
high-resolution polarimetric SAR images. The method uses
several statistical features obtained either directly from the
images or after performing a region segmentation. These
features are fused using logistic regression. The second sec-
tion of this paper briefly discusses some statistical proper-
ties of SAR images. The third section presents the region
segmentation method. Then the different features and the
logistic regression are explained. In the last part the results
obtained on a polarimetric (HH, HV and VV-polarisation)
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L-Band SAR image with a spatial resolution of 1 m are
discussed.

II. SOME STATISTICAL PROPERTIES OF SAR IMAGES

Because of the properties of the speckle in SAR images,
detectors (e.g. for linear features) that work well in visual
or infrared images fail in SAR images. However, because
for the major part of the images the statistics of the speckle
can be modeled accurately, this information can be used in
the development of a detector. The statistical distribution
in uniform regions in the different types of images is well-
known (see e.g. [2], [3] or any book about SAR). We will
only use the single-look amplitude image (A) and the loga-
rithm of the intensity ( D = In(A?)) for which the speckle
in uniform regions follows a Rayleigh distribution and a
Fisher-Tippett distribution respectively:
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The deterministic scatterers (diheders and triheders)
found in villages [4] produce bright regions which cause the
statistical distribution of the image value to differ highly
from the theoretical distribution of uniform regions.

Another important aspect is the relationship between
different components of multi-dimensional SAR images, i.e.
the different polarisations. In vegetated areas the correla-
tion between cross-polarised components (between HH/HV
or VV/HV) is negligible [5]. In built-up areas, the presence
of deterministic scatterers produces a much higher correla-
tion between cross-polarised components. The amplitudes
of the correlations between HH/HV and VV/HV approach
the one found between HH/VV.

The features used in this article for the detection of ag-
glomeration are based on these statistical properties.

I1I. IMAGE SEGMENTATION

The purpose of the image segmentation is to subdivide
the image into uniform regions. In SAR images, the noise-
like characteristics of the speckle cause classical segmenta-
tion methods to fail [2]. Especially methods based on mea-
surements of local intensity are not well-suited for SAR.
The only way to take into account the large point-to-point
variations due to speckle is to consider the statistics of the
image in the neighbourhood of the current pixel.

Such an approach is offered by the Merge Using Mo-
ments method [6]. MUM is a pure merge method, i.e. it
starts from small areas of the image which are supposed



to be homogeneous and then merges neighbouring areas if
they comply with some similarity measure. In the original
method [6] a Student-t test [7] is used to compare adjacent
regions. In the case of multi-channel data this test can
be replaced by its multi-variate version, the Hotellings T
test [7]. The method we used is based on the calculation
of the Mahalanobis distance between the average vector of
one region and the other region. The largest region is used
to calculate the covariance matrix. If a uniform region is
characterised by a multi-variate normal distribution, the
square of the Mahalanobis distance of its elements follows
a x2-distribution with degree of freedom equal to the num-
ber of variables. The y2-distribution could then be used
to find a constant false alarm rate (CFAR) threshold (e.g.
corresponding to an error of 5%).

However, when calculating the average of a region, the
Mahalanobis distance of this average will be much smaller
than that of the individual pixels in the region because we
approach the average of the underlying distribution. More-
over, due to the spatial correlation in the SAR images, the
elements of the covariance matrix will be underestimated.
Furthermore, the quality of the estimate of both the co-
variance matrix and the mean vectors is influenced by the
number of pixels that are used for the estimation. Both of
these effects lead to an underestimation of the Mahalanobis
distance.

The Mahalanobis distance will thus be a function of:

o The spatial correlation in the SAR image

o The number of pixels used to estimate the covariance
matrix: Nyer

o The number of pixels used to calculate the average:
Nmean

In order to find a CFAR threshold the effect of these
parameters has to be modeled. To achieve that we sim-
ulated Fisher-Tippett distributed data (corresponding to
log-intensity data in uniform regions [2]) with a spatial
correlation function corresponding to the one found for the
used SAR sensor. For a given combination of N,.; and
Niean a large number of samples was drawn and the his-
togram of the Mahalanobis distance calculated. From this
histogram the 95, 99, 99.5 and 99.9 % thresholds were de-
termined. Varying both N,.; and Npeqn a 3D surface of
thresholds is obtained (see fig 1).

This surface is used to adapt the threshold during the
merge process, i.e. the threshold decreases as the size of
the compared regions increases. The merge process is an
iterative process. At each iteration the regions for which
the ratio between the Mahalanobis distance and the found
threshold is smallest are merged first. The result is that,
for the same Mahalanobis distance, the smallest regions are
merged first. The results of a segmentation based on this
method using the 99.5% threshold is presented in fig 2. The
unusual high threshold, only allowing 0.5 % of false alarms,
causes an over-segmented image, but this is well-suited for
the distance measure defined below.
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Fig. 1. Threshold for Mahalanobis distance vs. N,cs and Nmean

Fig. 2. Result of MUM

IV. DESCRIPTION OF THE FEATURES
A. Introduction

The detection of built-up areas is based on the fact that
the SAR image is not uniform in such areas. In many ways
the statistics of built-up areas are different from those of
uniform regions. This is the basis for the different features
that are described below. Most features are calculated in
small rectangular windows scanning the image. Only the
first feature is calculated in the uniform regions found by
the image segmentation discussed in the previous section.

B. Distance measurement

This feature is based on the regions that were found by
the image segmentation. The idea is that in a built-up
area the uniform regions will be much smaller than in other
parts of the image. However, this is also true for the edges
between uniform regions. Hence the idea of linking a notion
of isotropy to a measurement of region size. For each re-
gion its geometric centre is determined. From a geometric
centre of one region, the closest centre to another region is
determined along different directions. In practice the space
around the current centre is divided in 8 parts (each cor-
responding to 45°) and in each part the smallest distance



is kept. The “distance” feature is the next largest of these
smallest distances. This is feature F;. The smaller this
distance, the more likely the region belongs to a built-up
area. This procedure eliminates the problem of edges be-
tween uniform regions because for these types of regions
the distance will be small only in a few directions.

C. Skewness Measure

In uniform regions the amplitude image follows a Raleigh
distribution which is skewed to the left. In built-up areas
the distribution becomes more symmetric and can even be
skewed to the right because of the presence of bright spots
or bright lines. However, the classical definition of skewness
can not be used as classical first order statistical estimators
fail in SAR images, and particularly in regions containing
deterministic reflectors, because they are to noisy and they
are not sufficiently precise in agglomerations. The main
reason is that a few isolated very bright spots have a very
large influence on these estimators yielding results that are
unstable.

We used an estimator of the skewness based on the me-
dian and two percentiles symmetrical around the median
( Py and Py with 0.0 <t < 0.50 ) of the local grey-value
distribution (cf. Yule):
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The estimator gives values bounded between -1 and +1.
Negative values are obtained for distributions that are
skewed to the left. To illustrate the problem with the clas-
sically defined skewness in agglomerations we calculated
a skewness image for a small part of the SAR using the
classical definition and the one based on percentiles ( with
t=0.1 and a 20 x 20 window size). In fig 3 can be seen that
isolated bright spots cause a patch pattern in the skewness
value when the classical definition is used.

Fig. 3. Original image (left), classical skewness (centre), skewness
based on percentiles (right)

D. Variance Measure

For uniform regions the variance is solely due to the
speckle. This variance is very low in the log-intensity im-
age (and equal to a constant independent of the region [2]).
In regions containing a lot of deterministic scatterers, the
variance becomes much higher. We defined a measure of
the variance, or rather of the lack of variance, analogously
to the definition of the skewness:
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An advantage of this measure as opposed to the classi-
cally defined variance is the fact that it is bounded; in fact
it is normalised between 0 and 1.

E. Interchannel Correlation

In uniform regions with azimuthal symmetry (most vege-
tation) the correlation between cross-polarised components
(i.e. between HH/HV and VV/HV) is very low. In ar-
eas with a lot of deterministic scatterers, such as dihed-
ers and triheders (e.g. in villages but also at the edges of
forests) this correlation increases up to a level compara-
ble to that of the correlation between co-polarised compo-
nents (HH/VV). Therefore we also used these three inter-
channel correlations as features: Fy = Cgp/pv,F5 =

Cvv/av,Fs = Cur/vv.

F. OQOverview of Feature I'mages

Calculating the different features in each pixel of the
original image yields feature images. Fig. 4 shows the
HH-polarised component of the original SAR image. The
corresponding region of a map that was transformed into
the coordinate space of the SAR image is shown in fig. 5.
Fig. 6 to fig. 11 show the different feature images. The
statistical parameters were calculated in a 40 x 40 window
scanning the image except for the skewness that was cal-
culated in a 20 x 20 window. All features were calculated
using the log-intensity image except for the skewness which
was calculated on the amplitude image. The figures show
that the different features are complementary. Most of the
features show the built-up areas either as bright or dark re-
gions. False alarms consist mainly of edges between fields
and forests. In the “distance image” the edges do not cause
false alarms. We now need to find a way to combine the
different features in order to obtain a good detection of
agglomerations.

Fig. 4. Original image



Fig. 5. Part of map warped to image coordinates Fig. 8. Image of Feature F3 (Variance Measure)

Fig. 6. Image of Feature F'1 (Distance Measure) Fig. 9. Image of Feature F4(Crm/nv)

Fig. 7. Image of Feature F» (Skewness Measure) Fig. 10. Image of Feature F5(Cyv/mv)



Fig. 11. Image of Feature Fs(Crypm/vv)

V. FEATURE FUSION USING LOGISTIC REGRESSION

Logistic regression [8] offers a way to combine the differ-
ent features while at the same time yielding a measure of
their respective discriminative power. It is a supervised ap-
proach: In the 1200 x 10000 single-look image we identified
a priori 1000 target (built-up areas) and 1000 background
pixels to constitute the learning set. In the learning phase,
at each pixel of the learning set, the different features were
calculated and each set of features was labeled as belonging
to the built-up area (1) or not (0).

Logistic regression is then used to find a combination of
the form :

eb°+zi b; Fi(z,y)
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Pzy(target | F) = (4)

in which psy(target | F) is the conditional probability
that a pixel (z,y) belongs to the class 1 given the vector of
features F' at the given pixel.

The logistic regression was carried out using Wald’s for-
ward method. In this method, at each step, the most dis-
criminant feature is added and the significance of adding
it to the model is verified. This means that not all feature
will necessarily be included into the model. The Wald co-
efficient is a measure for the significance of the feature, i.e.
its discriminative power for the given task. Table I shows
the weights resulting from the logistic regression as well as
the Wald coefficients.

TABLE I
RESULTS OF THE LOGISTIC REGRESSION

Name | Parameter Name | Weight | Wald
F Distance -0.0401 159
F Skewness 0.0229 31.9
F; VarMeas -0.0197 | 24.09
F, Cuu/HV 0.0140 6.24
Fy Cvv/av 0.0482 76.3
Fy Cuu/vv -0.0326 | 53.4
Fy Constant 0.0112 | 0.0001

Apparently all features were selected. This supports
the idea that they represent complementary information.
The values of the Wald coefficient show that the most
significant features are the distance and two of the cor-
relations ( Cyy/py and Cgp/vy ). The least significant
(although still having non-zero weight) is the correlation
Cruu/av- This is not surprising as it is highly correlated
with CVV/HV'

VI. RESULTS AND DISCUSSION

Applying the weights found on the learning set to the
complete feature image set gives the result shown in fig. 12.
If a threshold of 90 % is applied on the output of the logistic
regression most of the built-up areas are well detected. The
effect of such a threshold is shown in fig. 13. In the figure
the results are labelled using the ground truth extracted
from the map. The dark regions are false alarms, the white
ones are the correctly detected built-up areas, dark grey is
the background and the light grey regions correspond to
undetected parts of the built-up areas.

False alarms are found at the position of the motorway
and especially at the cross-roads of the motorway. Some
small false alarms do correspond to the edges between
forests and fields. The false alarm at the top left is an
earthen wall. The false alarms that remain are thus mainly
due to regions in the image where deterministic scatterers
are also likely to occur. If one is only interested in detecting
large agglomerations most false alarms could be eliminated
by constraining the size of the detected regions and elim-
inating narrow regions. Most of the so-called undetected
parts are due to the crudeness of the ground truth, i.e. the
contour of built-up areas was delimited but can still contain
free spaces (fields, lawns,etc.).

In fig. 14 the probability of detection P; is plotted
against the probability of false alarms Pp4. Points on
this so-called ROC (receiver-operator curve) are obtained
by varying the detection threshold. Please note that Pp4
and P; were both defined as ratios of surfaces, i.e. the
false alarm probability is the ratio of the number of false
alarm pixels to the total number of pixels in the image and
the probability of detection was defined as the number of
correctly detected pixels divided by the number of pixels
contained in the built-up areas extracted from the map.



Results of the logistic regression

Fig. 13. Ground truthed results at 90 % threshold. White=Correct
Detection, Black=False Alarms, Light Grey=Undetected Areas
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Fig. 14. ROC curve for the detector
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VIII. CONCLUSIONS

A new method for detecting built-up areas using full-
polarimetric SAR images was presented. The method is
based on a combination of some simple statistical estima-
tors. The estimators were designed to cope with the large
dynamics of the SAR amplitudes in agglomerations. Lo-
gistic regression has shown that the polarimetric features
(the interchannel correlations) are among the most discrim-
inating features of those that were used. The logistic re-
gression yields an image on which all built-up regions have
been well selected and with false alarms only due to other
types of extended vertical structures. False alarms due to
edges between fields and forests were avoided by introduc-
ing a feature (distance measurement) based on the isotropy
of the spatial distribution of small uniform regions within
built-up areas.
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