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ABSTRACT

This paper presents an approach to the long range automatic detection of vehicles, using multi-sensor image se-
quences. The method was tested on a database of multi-spectral image sequences, acquired under diverse operational
conditions. The approach consists of two parts.

The first part uses a semi-supervised approach, based on texture parameters, for detecting stationary targets.
For each type of sensor one learning image is chosen. Texture parameters are calculated at each pixel of the learning
images and combined using logistic regression into a value that represents the conditional probability that the pixel
belongs to a target given the texture parameters. The actual detection algorithm applies the same combination to
the texture features calculated on the remainder of the database (test images). When the results of this feature
level fusion are stored as an image, the local maxima correspond to likely target positions. These feature-level-fused
images are calculated for each sensor. In a sensor fusion step the results obtained per sensor are then combined
again. Region growing around the local maxima is then used to detect the targets.

The second part of the algorithm searches for moving targets. In order to detect moving vehicles, any motion
of the sensor needs to be detected first. If sensor motion is detected, it is estimated using a Markov Random Field
model. Available prior knowledge about the sensor motion is used to simplify the motion estimation. The estimate
is used to warp past images onto the current one in a temporal fusion approach and moving targets are detected by
thresholding the difference between the original and warped images.

Decision level fusion combines the results from both parts of the algorithm.
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1. INTRODUCTION

Long range automatic detection of vehicles is of great military importance to modern armed forces. The most critical
factor of any system for automatic detection is its ability to find an acceptable compromise between the probability
of detection and the number of false targets. A lot of work has already been carried out on the detection of single
vehicles and target formations.™ However, detection and tracking of small, low contrast vehicles in a highly cluttered
environment using a single sensor, still remains a very difficult task.

This paper describes an approach to tackle this problem using data fusion at different levels. The approach was
implemented and then tested on a set of six image sequences obtained from different sensors under diverse operational
circumstances. The target area in the images varies from small, typically less than 20 pixels-on-target, up to 2000
pixels-on-target. The vehicles can be either moving or stationary. In most of the sequences, the sensor was mounted
on a stationary platform and could only perform a tilt and pan operation. Most of the images are highly cluttered.
This clutter is caused by sensor noise, natural background texture and the presence of human artifacts in the scene

(e.g. buildings).

The approach presented in this paper consists of two independent parts. The next section presents the image
database, then an overview of the method is presented. The subsequent sections describe the two parts of the
algorithm. The last two sections show results and conclusions.



2. IMAGE DATABASE

For the development and testing of the algorithm, a database of 6 multi-spectral image sequences, numbered MS01
to MS06 *, was compiled. Table 1 presents some properties of the sequences. In figure 1 some typical images are

shown.

Sequence Targets Target Motion Sensors

MS01 Helicopter Across Field Infrared (LW)

Tow truck of View (FOV) Visual (B/W)

MS02 Truck Toward sensors Infrared (LW)

Visual (B/W)

MS03 2 Armoured Vehicles Stationary Infrared (LW)

Infrared (SW)

Visual (B/W)

MS04 2 Armoured Vehicles Stationary Infrared (LW)

Infrared (SW)

Visual (B/W)

MS05 Helicopter Across FOV Infrared (LW)
Visual (Red, Green, Blue)

MS06 Jeep Across FOV Infrared (LW)
Armoured Vehicle Visual (Red, Green, Blue)

Table 1. Overview of the image sequence database
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Figure 1. Image Sequence Database

*MS01-MS02: Courtesy of Defense Research Establishment Valcartier, Quebec, Canada
MS03-MS04: Courtesy of Naval Air Warfare Center, China Lake, US
MS05-MS06: Courtesy of ASTAT-DTT, Peutie, Belgium



3. OVERVIEW OF THE APPROACH

Figure 2 shows an overview of the method. The proposed algorithm consists of two independent parts. The first part
searches for targets in single images while the second part uses multiple subsequent images in order to specifically
find moving targets.

For the first part of the algorithm we have chosen an approach based on texture feature extraction. We are not
interested in explicitly modelling or measuring texture but only in augmenting the difference between targets and
background. Nevertheless, these texture features are interesting because they are independent measurements of the
local spatial distribution of grey values within an image and it is likely that some of these parameters will highlight
the difference between targets and background. The texture parameters are even more appealing because it can easily
be seen that features that are classically used for target detection such as intensity and gradient are just special cases
of these texture parameters. Feature level fusion is used to combine the texture features from each image into a new
image in which the grey value at each pixel is proportional to the probability that the pixel belongs to the target.
These images from the different sensors are fused in a sensor fusion step.

The second part of the algorithm detects moving targets in sub-sequences from each sensor separately.

Each part of the algorithm behaves as an expert indicating the possible presence of vehicles in the scene. Decision
fusion 1s used to combine the outcomes from all experts.

Figure 2 shows the global overview of the method.
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Figure 2. Overview of the approach

4. TARGET DETECTION IN SINGLE IMAGES (TDSI MODULE)
4.1. Introduction

For the detection of targets in single images, a semi-supervised approach based on texture features was chosen. For
each sensor type, one image was selected to constitute the learning database. On these images the true targets
were delimited. Then several texture parameters were calculated at each pixel of these learning images and logistic



regression® was used to find a combination of the texture parameters that is proportional to the probability of finding

a target at the corresponding image location.

The actual detection algorithm then applies the same combination to the texture features calculated on the
remainder of the image database (test images). When this function is applied to the texture features calculated
at each pixel of a test image, a new image, called feature-level-fused image, can be formed in which the maxima
correspond to likely target positions. These feature-level-fused images, obtained from all the different sensors, are
then fused again in a subsequent sensor fusion step.

To find the possible target positions, first the local maxima are determined in this sensor-fused image and then
available prior knowledge about possible target size and aspect ratio is used to reject false targets.
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Figure 3. TDSI module

4.2. Texture parameters

The calculation of the texture features is based on the co-occurrence matrix. The co-occurrence matrix is defined as a
function of a given direction and distance, or alternatively, as a function of a displacement (dx,dy) along the x and y
direction in the image. For a given displacement (dx,dy), the (4, j) element of the co-occurrence matrix is the number
of times the grey value G at the current position (x,y) is i when the value at the distant position (x+dx,y+dy) is j.
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The co-occurrence matrix can be calculated on the whole image. However, by calculating it in a small window
scanning the image, a co-occurrence matrix can be associated with each image position. The centre of the window is
denoted (z.,y.) and the corresponding co-occurrence matrix is Cﬁf”;f(i, J) In figure 4 an example of a co-occurrence
matrix is shown. The matrix corresponds to the small window of the image on the left and was calculated for a
displacement of de = 1, dy = 2.
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Figure 4. Co-occurrence matrix

The textural features that were used, were introduced by Haralick®® and are widely used in texture analysis.
Based on the local co-occurrence matrix, the used parameters are defined as follows:
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We are not interested in modelling or measuring texture but only in detecting a difference between target and
background pixels. The ”texture parameters” are only used as features of which we hope that some will highlight
the difference between target and background. Because we do not intend to measure the texture within the target,
the parameters are useful even for small targets and we can chose an arbitrary displacement (dz = 1,dy = 1) for all
calculations of the co-occurrence matrix.

The window used to calculate the local co-occurrence matrix had a size of 5 x 5. The results for each texture
feature can be converted into an image. Figure 5 shows the texture images corresponding to the first image set (IR
and VIS) of sequence MS01, which served as the learning image set.

As can be noticed in figure 5, the vehicles are clearly visible in some of the texture images. Hence the idea
to combine the texture features to get an optimal discrimination between background and targets. Discriminant
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Figure 5. Texture Images

analysis can be used to obtain such a combination,” but it is based on assumptions that are not always verified (e.g.
normal distribution with same co-variance matrix for all classes). When only two classes are involved, as is the case
here (targets/background), logistic regression offers a more appropriate approach.®

In the learning phase, at each pixel of the learning image(s), the texture features are calculated and stored in
a table. Then the human operator interactively indicates the bounding rectangles surrounding the targets in the
learning image(s) and a column is automatically added to the table assigning each measurement in the table to either
class 0 (background), when it corresponds to an image pixel that falls outside the bounding rectangles, or class 1
(targets) when it is inside one of the rectangles.

Logistic regression is then used to find a combination of the form :
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in which pgy(target | F) is the conditional probability that a pixel (z,y) belongs to the class 1 (target class) given
the vector of texture parameters F at the given pixel. The logistic regression was carried out using Wald’s forward
method. In this method, at each step, the most discriminant feature is added and the significance of adding it to
the model is verified. This means that not all feature will necessarily be included into the model. Table 2 shows the
results for the visual and infrared learning images.

Coefficient Feature IR type sensors | VIS type sensors

By Constant Term -15.478 -17.927

B Energy 2.356 0

Bs Contrast 0 0

Bs Max. Prob. 0 4.733

By Entropy 4.664 5.604

By Homogeneity 0 2.604

Bs Variance 0.0107 0

Table 2. Coefficients from the logistic regression

4.3. Feature level fusion

If the learning images are representative for the images of a given sensor type, the most discriminating features for
each sensor will have the highest weights b;. Therefore, when using the same weights (table 2) to combine the feature
images of the remainder of the database into new images using equation 3, targets will appear as local maxima. This
is the feature level fusion. Results of applying the feature-level fusion to the images of figure 1 are shown in figure 6.
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Figure 6. Results of feature fusion

4.4. Sensor Fusion

The sensor fusion step combines the images obtained by the feature level fusion step. In the feature-level-fused
images, for each sensor, targets appear as local maxima. Therefore it is possible to fuse these images by a simple
multiplication. In the new images the targets will still appear as local maxima. Figure 7 shows the result of applying
this simple sensor fusion to the feature-level-fused images of figure 6.

MS01 MS05 MS06

Figure 7. Results of sensor fusion

4.5. Region Growing around Local Maxima

In the sensor-fused image the local maxima will correspond to likely target positions. To detect the targets it is thus
necessary to find these local maxima. A region growing procedure around the maxima is then used to incorporate
available prior knowledge about target size and aspect ratio.

4.5.1. Local Maxima

The detection of local maxima is based on a succession of morphological operations.®'? The basic operator is a
dilation with a 2 x 2 structuring element. Figure 8 shows the different steps of the method.
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Figure 8. Detection of Local Maxima

4.5.2. Region Growing

To incorporate any available prior knowledge about the possible range of target size or aspect ratio, a region growing
procedure is used. The initial regions for the region growing are the local maxima in the image. Surrounding pixels
are added to these regions as long as their grey level differs less than a given threshold from the value at the local
maxima. If the region becomes too large it is discarded. If the region growing of a given region stops before it reaches
the upper size-limit, the other constraints are checked. If a constraint is not satisfied, the region is discarded.

5. MOVING TARGET DETECTION (MTD MODULE)

The second part of the algorithm focusses on the detection of moving targets. In order to detect moving targets,
any sensor motion needs to be detected and its effects compensated first. Then, in a temporal fusion step, preceding
images can be warped onto the current one. Moving objects will appear as a difference between the original image
and the warped ones.

5.1. Detection of sensor motion

The detection of sensor motion is again based on co-occurrence matrices. This time the co-occurrence matrix is
calculated between an image and the preceding one (temporal co-occurrence matrix).

Camy®(i,j) = #(Glz,y; 1) = | Gz + dz,y + dy; t+dt) = j)

If no sensor motion occurred between the two images, ideally, for dz = dy = 0 (i.e. no spatial displacement), all
non-zero elements of the temporal co-occurrence matrix should lie on the diagonal. However, due to noise, there will
be a small spread along the diagonal. If one calculates the spatial co-occurrence matrix for a small displacement,
the spread along the diagonal is due to noise and to the fact that the image is not homogeneous. Therefore, when
comparing this spatial co-occurrence matrix with the temporal co-occurrence matrix, the spread along the diagonal
is expected to be the largest in the former one if no motion occurred between the two images that were used
to calculate the temporal co-occurrence matrix. When motion is present, the spread along the diagonal quickly
becomes larger. The measurement we used to detect sensor motion is based on the percentage of off-diagonal points
in both co-occurrence matrices:
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This is calculated for both the temporal (M Cjepmp) and for the spatial co-occurrence matrix (M Cjpqs). Sensor
MCiemp—MCspar
MCspat
are shown. The upper images show the matrices for a part of a sequence where no sensor motion was present. The

motion is said to be present if > 0.005. In figure 10 the spatial and temporal co-occurrence matrix
lower images show an example of both matrices calculated in a part of the same sequence where the sensor was
moving.

5.2. Motion Estimation

If sensor motion is detected, we need to estimate it and compensate its effects on the images. The estimation of
sensor motion relies on prior knowledge. Three cases are distinguished.

e If it 1s known that the sensor was fixed and can only do a pan or tilt, the corresponding motion in the image
will consist of a uniform translation. In this case we search for the translation by optimising the correlation for
a few horizontal and vertical lines.

e If the sensor was mounted in an aircraft, the terrain can be approximated by a plane and a model of the
perspective projection of a rigid plane moving in three dimensions is used.'’ This model has only § parameters,
so finding 4 displacement vectors between two images is sufficient to determine these parameters. In fact we
use a threshold that is progressively lowered until at least 15 corresponding regions are found and then a least
square method is used to find the parameters.?

e In any other case we calculate the optical flow. The calculation of optical flow is based on a Markov Random
Field model*?'3 which implements a conservation and a smoothness constraint but at the same time handles
motion discontinuities and occlusions.
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Figure 10. Detection of sensor motion

The three methods given above are listed in order of increasing computational complexity. The method based
on correlation would typically need a few seconds (on an HP900/715) to estimate the motion between two images
whereas the optical flow method would take about half an hour. Furthermore, because in the latter case, no model
can be used to describe the motion field, at least one of the sensors should present enough contrast everywhere in
the background in order to obtain an accurate flow field. When only infrared sensors are used, this is not always the
case. Therefore it is important to use prior knowledge about the type of sensor motion whenever it is available in
order to simplify the used model.

5.3. Detection of moving targets

Once the sensor motion is estimated, preceding images are warped onto the current one. Then the original image
is subtracted from the warped ones. If a moving object is present in the scene, we should find a large value at
its position. The resulting images after subtraction are therefore thresholded and objects with acceptable size and
aspect ratio are selected using a region growing procedure. Tracking is used to get the target list. Figure 11 shows
the result of subtracting the original image from the warped ones.
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Figure 11. Detection of moving targets

6. DECISION FUSION

The two parts of the algorithm each behave as experts indicating the possible position of targets in the scene. The
final decision is reached by fusing the results of these experts.

For the detection of targets in single images, the decision was made after fusing the feature images from all sensors.
For the detection of moving targets however, each single sensor acts as an expert. Therefore, the single decision from

10



the first part of the algorithm should have a higher weight than the different decisions from the second part of the
algorithm. Furthermore, because each expert only provides a binary decision - i.e. either a target is present or it is
not - the decision fusion is implemented as a weighted “k out of N” voting-rule.'*15

7. RESULTS AND DISCUSSION

Table 3 shows the results for the two parts of the algorithm. For the first part of the algorithm the decision is reached
after the sensor fusion step. For the second part of the method, the decision is presented for each individual sensor.
In the table Pd is the probability of detection and Nft is the average number of false targets per image.

Sequence | Sensor Results of TDSI Results of MTD
After sensor fusion | For each sensor
Pd (in %) Nft Pd (in %) | Nft
1 LW 95 2.6 92 1
VIS 1 0
2 LW 63 4 20 0
VIS 36 0
3 LW 95 0 4 0
SW 0 0
VIS 4 0
4 LW 34 1 0 0
SW 0 0
VIS 0 0
5 LW 95 0.2 1 3
Red 42 0
Green 41 0
Blue 46 0
6 LW 50 5.8 1.8 0
Red 19 0.38
Green 28 0.43
Blue 29 0.52

Table 3. Results of the different “experts”

The motion detection only gives useful results in the first and fifth sequence. This is basically due to the sequences
themselves. In sequences 2 the target is approaching the sensor straight on and therefore it is only detected as a
moving target at the end of the sequence where its apparent size increases. In sequence 3 and 4 the targets are
stationary. The few detections that are made by the MTD algorithm in sequence 3 are due to a moving antenna on
top of the vehicles.

In table 4 the results after the decision fusion are shown. In sequence 3 the fusion improves results. The results
for sequences 5 and 6 are better using a single sensor than those found after the fusion. This is due to the error on
the image registration. For the calculation of Pd and Nft after fusion, all results are mapped in the coordinate space
of the infrared sensor using image registration methods. Table 3 shows that, in the second part of the algorithm, the
visual sensor in sequence 5 and 6 i1s almost solely responsible for all detections. Therefore, if the registration from
the visual image to the infrared image is not accurate enough, a position declared as being a target by the visual
sensor might just fall within the true target region while, when it 1s mapped into the coordinate space of the infrared
image, it falls just outside and hence 1s counted as a false target.

8. CONCLUSIONS

In this paper an approach is presented for the detection of targets using multi-sensor image sequences. The developed
algorithm consists of two parts. The first part detects targets in single images and is based on texture measurements.
For this part of the algorithm a semi-supervised approach is followed. For each sensor a learning image is chosen

11



Sequence | Results for k=2
Pd (in %) | Nft
1 95 2.6
2 63 4
3 93
4 34 1
5 96 2.8
6 50 8.6

Table 4. Results after decision fusion with “k out of N” voting-rule

and targets are indicated manually. Then logistic regression is used to find the combination of the different texture
parameters that optimises the discrimination between target and background. The weights for these measurements
are specific for each of the sensor types (Infrared/Visual). The same weights are then used for the actual target
detection in other images of the same sensor type, even for images from different sequences. The second part of the
algorithm specifically focusses on the detection of moving targets. If a target is moving in a direction that does not
coincide with the viewing direction of the sensors, this part of the algorithm gives good results. In any case, the
number of false targets produced by this part of the algorithm is very low. Each part of the algorithm behaves as an
expert indicating the possible presence of a target. The final decision of the algorithm is reached by fusing the results
of the experts for the different sensors. Because the information to be fused is binary (either a target is detected or
it is not), the decision fusion is based on a weighted “k out of N” voting-rule.
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