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ABSTRACT:

Anomaly  detection  in  hyperspectral  data  has 
received a lot of attention for various applications 
and  is  especially  important  for  defence  and 
security. The aim of anomaly detection is to detect 
pixels  in  the  hyperspectral  data  cube  whose 
spectra  differ  significantly  from  the  background 
spectra. 

Many  types  of  anomaly  detectors  have  been 
proposed in literature. They differ by the way the 
background spectra are defined and described and 
by the method used for determining the difference 
between  the  pixel  under  test  and  the  estimated 
background characteristics. 
The most well-known anomaly detector is the RX 
detector.  Several  detectors  have  been  derived 
from the basic RX detector. 

On  the  other  hand  methods  based  on  image 
segmentation  have  also  been  introduced.  These 
are particularly useful in areas characterised by a 
highly structured background (e.g. urban scenes).

The current  paper  presents  a  comparison of  the 
results obtained by representative examples of two 
classes  of  anomaly  detector:  the  RX-family  of 
detectors and the segmentation-based detectors.
 

1. INTRODUCTION

Many types of anomaly detectors (ADs) have been 
proposed in literature [1]. The most frequently used 
anomaly detector is the Reed-Xiaoli (RX) detector 
[2]. Different variations of this method have been 
proposed in literature [3, 4, 5, 6, 7]. On the other 
hand, and mainly for complex scenes (urban and 
industrial  scenes),  segmentation-based  anomaly 
detectors  (SBAD)  have  also  been  introduced  [7, 
10, 11]. The current paper compares the results of 
a selected number of examples of both AD classes 

when  applied  to  hyperspectral  datacubes  of 
different complexity. In particular two rural scenes 
with sub-pixel anomalies, a rural scene with some 
targets  in  shadow  and  an  urban  scene  were 
considered. 
.

2. ANOMALY DETECTION METHODS

2.1 RX-based methods

The  RX  detector  [2]  is  a  standard  in  anomaly 
detection. Basically the RX detector calculates the 
Mahalanobis distance between the pixel under test 
(PUT) and the background:

( ) ( )BB
T

BRX rCrD µµ −−= −1

BC and  µB are  respectively  the  sample  spectral 

covariance  matrix  and  the  spectral  mean  of  the 
background pixels; r is the spectrum of the PUT.
Many different implementations of the RX detector 
have been proposed in literature. They differ in the 
way  the  background  covariance  matrix  and 
background mean is defined and estimated. In the 
current paper different types of global RX methods 
as well as local RX and quasi-local RX are applied.

Global RX (GRX)
The GRX detector estimates the covariance matrix 
and mean of the background using all pixels of the 
image. GRX therefore has no parameters. GRX is 
applied  after  dimension  reduction  based  on  a 
Kurtosis criterion.

Complementary Subspace Detector (CSD)
In  the  CSD  the  highest  variance  principal 
components  (PCs)  are  used  to  define  the 
background  subspace  and  the  others  (the 
complementary subspace) the target subspace [4]. 
The PUT is then projected on the two subspaces 
and the anomaly detector is the difference of the 
projection  onto  the  target  subspace  and  the 
background  subspace.  Spectral  whitening  is 
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applied as pre-processing step.

Sub-space RX (SSRX)
In this paper SSRX is the GRX applied after PCA 
and the background statistics are determined on a 
limited number of PCA bands. Usually the first PCs 
are discarded in SSRX.

RX  after  orthogonal  subspace  projection 
(OSPRX)
In OSPRX the background is defined by the first 
components  of  a  Singular  Value  Decomposition. 
These  first  components  define  the  background 
subspace  and  the  data  are  projected  onto  the 
orthogonal  subspace  before  applying  the  RX 
detector [1].

Partialling Out RX detector (PORX)
In this method the effect of the clutter in a pixel is 
partialled out  component-wise by predicting each 
of its spectral components as a linear combination 
of its high-variance principal components [5]. The 
detector  applies  a  Mahalanobis  distance  on  the 
residual.

CSD,  SSRX,  OSPRX and  PORX have only  one 
parameter:  the  number  of  spectral  bands 
considered to belong to the background.

Local RX (LRX)
In  this  case  the  covariance  matrix  and  mean is 
determined locally in a window around the PUT. A 
double  sliding  window  is  used:  A  guard  window 
and  an  outer  window  are  defined  and  the 
background  statistics  are  determined  using  the 
pixels between the two. The covariance matrix is 
regularized using diagonal loading before inversion 
[8]. The scale factor for the diagonal loading used 
here  is  the  median  of  the  eigenvalues  of  the 
covariance  matrix  calculated  on  the  complete 
image. Parameters of LRX are the guard and outer 
window sizes (GWS, OWS). ). LRX is applied after 
dimension reduction based on a Kurtosis criterion.

Quasi-local RX (QLRX)
In quasi-local  RX the global  covariance matrix is 
decomposed  using  eigenvector/eigenvalue 

decomposition [6]: T
B UUC Λ= . The eigenvectors 

are  kept  in  the  RX,  but  the  eigenvalues  are 
replaced by the maximum of the local variance and 
the global eigenvalue. This means that the score of 
the detector will be lower at locations of the image 
with  high  variance  (e.g.  edges)  than  in  more 
homogeneous  areas.  Spectral  statistical 
standardization  is  applied  as  a  pre-processing 
step. The local variance is determined in a double 
sliding window. Parameters are OWS and GWS.

2.2 Segmentation-based methods

Class-Conditional RX (CCRX)
Although  CRXis  also an  RX-based  method,  it  is 
cataloged  here  under  Segmentation-Based 
Anomaly  Detectors  (SBADs)  because  it  is  also 
based on image segmentation.
In  CRXthe  image  is  first  segmented,  the 
covariance matrix and mean within each class is 
determined.  The  Mahalanobis  distance  between 
the PUT and each of the classes is calculated. The 
final result  is the minimum of these distances. In 
the current paper K-means clustering is used and 
the  parameters  of  the  method  are  minimum 
number of pixels allowed in each classes and the 
maximum  number  of  classes  used  in  the 
clustering. NC, the number of classes, follows on 
these parameters
The  CRX  is  applied  after  dimension  reduction 
based on a Kurtosis criterion.

Method based on Multi-normal mixture models 
(MMM)
A  Stochastic  Expectation  Maximization  (SEM) 
algorithm  [9]  is  used  for  fitting  a  multi-normal 
mixture  to  the  image  for  describing  the 
background. The anomaly detector detects pixels 
having a low probability according to the estimated 
model.  The  MMM  was applied  after  spectral 
binning [14] and square root transformation of the 
data in order to make the noise signal independent 
[13].  The  parameters  of  the  method  are  the 
number of mixture components and the termination 
threshold  for  the  iterative  parameter  estimation 
method.

Two-level endmember selection method (TLES)
The principle of this method [10] is the following: a 
small  scanning  window (50x50  pixels)  runs  over 
the image and at each position of the window the 
principal background spectra are determined using 
a  segmentation  method  based  on  end-member 
selection.  Endmembers  that  correspond  to  a 
minimum percentage  (MP)  of  the  image tile  are 
stored. 
At the end of the process an endmember selection 
is again applied on the stored endmembers and 
linear unmixing is applied on the image. Anomalies 
correspond  to  pixels  with  a  large  residue  after 
unmixing. The parameters of the method are the 
number of endmembers in the first and last stage 
and  MP.  In  [10]  N-FINDR  was  used  as  the 
endmember selection method. In the current paper 
the  minimum  volume  simplex  analysis  algorithm 
(MVSA)  [11]  was  used  because  it  was  found  to 
give better results.

Method based on a Self-Organizing Map (SOM)
A trained SOM is considered as a representation of 



the background  classes in the scene.  Anomalies 
are  determined  by  computing  the  spectral 
distances of the pixels from the SOM units [12]. 
The  SOM  was  applied  on  the  first  PCA 
components  and  run  using  a  square  map 
consisting  of  NsxNs  hexagonal  cells.  It  was 
optimized sequentially and its parameters are Ns 
and the number of PCA bands used.

3. IMAGE DATABASE

The  analysis  was  performed  on  a  set  of  4 
hypercubes of scenes with varying complexity and 
representative of three scenarios: 

• sub-pixel detection in a rural environment
• detection in a rural environment with some 

of the targets in shadow
• detection  of  anomalies  in  an  urban 

environment

Fig.  1  shows  an  RGB  composite  for  the  two 
datasets  with  sub-pixel  anomalies.  In  Fig.  2  the 
dataset  with  targets  in  shadow  and  the  urban 
dataset  are shown. The locations of  the different 
targets are also indicated.   Tab. 1 presents the 
main  characteristics  of  the  dataset  used  in  the 
paper. The first column is the name by which the 
scenes will be referred to further in this paper. 

  
Figure 1: RGB composites of datacubes of CAM and OSL1

  
Figure 2: RGB color composites of BJO and OSL2 with target locations indicated.



Name Site Sensor # Waveband Image # #tgt Scene Type of
 name bands µm Size tgts pixels description anomalies

CAM Camargue(Fr) HyMap 118 0,41-2,45 150x100 45 45
Agricultural 

area green paint

OSL1 Oslo(No) HySpex 80 0.41-O.98 286x287 81 81
Park near 

Oslo green fabric

BJO
Bjoerkelangen

(No) HySpex 80 0.41-O.98 700x1600 14 574
Forest and 

fields
different 

materials 

OSL2 Oslo(No) HySpex 80 0.41-O.98 700x1600 4 45
City center 

of Oslo

green 
fabric,

blue plastic 

Table 1: Overview of image database

In  the  datasets  CAM  and  OSL1  a  matrix  of 
anomalies  was  inserted  artificially.  Fig.  1  shows 
these images with full-pixel anomalies. The results 
shown in this paper were obtained in images with 
10% mixing ratio sub-pixel anomalies for the CAM 
scene. For OSL1 the mixing ratio was varied from 
100% downto 10%. 

In the BJO scene 14 targets of different sizes and 
materials are present. Tab. 2 presents the size of 
the different  targets  in pixels.  Targets  3-7 are in 
shadow. Figure 2 (left) shows a RGB composite of 
the BJO scene. A cyan colored rectangle delimits 
the  bounding  boxes  of  each  target.  Target  3  is 
hidden in the trees, the 4 other targets in shadow 
are located at the edge of the forest.

T1 T2 T3 T4 T5 T6 T7

8x22 5x11 4x3 2x3 5x7 4x4 3x3

T8 T9 T10 T11 T12 T13 T14

2x7 3x4 8x10 5x7 4x7 5x8 7x16
Table 2: Target sizes (in pixels) in the 

BJO scene
 
In  OSL2  four  targets  are  present  (see  figure  2 
right)  with  respective  sizes  5x10  5x9  2x6  6x7 
pixels. Two of them consist of green fabric and the 
other two of a blue plastic. The first three were laid 
out on the grass in a park, the fourth was laid on 
an asphalt background.
The images BJO, OSL1 and OSL2 were not geo-
rectified before processing and all processing was 
applied  to  radiance  data,  i.e.  without  applying 
atmospheric correction.

4. IMPLEMENTATION ISSUES AND 
EVALUATION METHODOLOGY

5.  Pre-processing

Before  applying  the  actual  anomaly  detectors, 
some pre-processing methods were applied to the 
data. The pre-processing technique used depends 
on the dataset and on the anomaly detector.

Spectral whitening

The  RX-based  methods  were  applied  with  and 
without  spectral  whitening  and  the  best  result 
obtained  is  reported  in  this  paper  (see  results 
section).  For  CSD  spectral  whitening  is  always 
applied. If the eigenvalues and eigenvectors of the 
covariance matrix of the complete image are resp. 
Λ and U and µ is the average spectral vector of the 
image, then the spectral whitening of the pixel r is 

given by: )(1 µ−Λ= − rUUr TW

Whether  whitening  is  beneficial  for  the  anomaly 
detector  depends  on  the  AD  method  and  the 
datacube. 

Shadow detection

In  the case of  images that  exhibit  large contrast 
between shadow and sunny parts, a classification 
step in two classes shadow/sunny can be inserted 
prior to the selection of spectral features and AD. 
It relies on the fact that radiance in NIR bands is 
very  low  in  shadow,  because  there  is  no  direct 
irradiance and the Rayleigh scattering effects that 
decrease with the wavelength power 4, induce low 
diffuse irradiance, too. Then, the histogram of NIR 
radiances of the image exhibits a first mode for low 
values  that  corresponds  to  shadow  parts  of  the 
image. (fig. 3 and fig. 4).
This shadow/sunny classification has been applied 
prior  to  GRX  and  CRX  for  the  BJO  and  OSL2 
image.  In  the  CRX  method  the  shadow  class 
counts as an additional class.



Figure 3: Histogram of NIR radiances of 
BJO image

Figure 4: BJO shadow mask

6.  Evaluation methodology

Experimental  ROC  (Receiver  Operating 
Characteristics) curves, showing the detection rate 
(DR) vs. the false alarm rate (FAR), are used to 
evaluate  the  results  obtained  with  the  various 

detectors. For the images with resolved targets, a 
pixel  based  ROC  curve  is  calculated  for  each 
target,  whereas  for  the  images  with  subpixel 
targets, a ROC curve is calculated based on all the 
targets  in  the  image.  DR  is  plotted  vs.  the 
logarithm of  the  FAR  (the  resulting  curve  is 
referred to as a logROC), and the area under the 
logROC curve (the logAUC) is calculated and used 
as  the measure of  performance.  The  reason  for 
using  a  logarithmic FAR scale is  that  it  ensures 
equal weight across the range of FAR values. 

7. RESULTS AND DISCUSSION

8.  Results for CAM and OSL1

Tab.  3  presents  the logAUC results  obtained for 
CAM10. It can be seen that LRX, CRX and MMM 
give  the  best  results.  Of  the  global  RX-based 
methods OPSRX gives the best results.

Fig. 5 shows the logAUC for the OSL1 scene for 
the different  detectors versus the mixing ratio.  In 
this experiment  the mixing ratio was varied from 
100% (full pixel anomaly) to 10%. Results of global 
RX-based methods are shown as solid lines, the 
LRX  and  QLRX  as  dot-dash  lines  and  the 
segmentation-based  methods  as  dashed  lines. 
CRX and LRX clearly give the overall best results. 
The next best results are obtained by MMM. From 
the  global  RX-based  methods  the  OSPRX  and 
SSRX give the best results. 

GRX SSRX PORX OSPRX CSD LRX
0.732 0.743 0.569 0.931 0.868 1
QLRX CRX TLES SOM MMM
0.72 1 0.129 0.116 1

Table 3: logAUC for CAM10

Shadow   sun



Figure 5: Results of logAUC vs. mixing ratio for OSL1 and for the different detectors

While the MMM gives very good results, the three 
other segmentation-based methods give quite bad 
results. Even at full-pixel target size CSD, QLRX, 
TLES and SOM fail to achieve a unity logAUC.

9. Results for BJO

In the BJO scene 14 targets are present (see fig 
2),  labelled  T1  to  T14.  Targets  T3-T7  are  in 
shadow areas. 
Figure 6 shows a graphical  representation of  the 
logAUC  for  each  of  the  detectors  and  for  each 
target.  The  colours  represent  the  value  of  the 
logAUC. From the figure it is immediately clear that 

T2 is the most easily detectable target.  It  is also 
clear that the targets in shadow are more difficult to 
detect  than  the  others.  Target  3,  hidden  in  the 
forest, is the most difficult to detect. For the targets 
in  shadow  MMM  gives  the  overall  best  results, 
followed  by  GRX  and  CRX,  both  after  shadow 
masking, and LRX. None of the other global RX-
based methods give good results.  For the targets 
that are not in shadow areas the MMM and CRX 
give  the  globally  best  results.  For  these  targets, 
applying the shadow mask to the GRX and CRX 
degrades  the results,  except  for  T1. MMM gives 
the most consistent results over all targets.

Figure 6: logAUC values for all detectors and each target for the BJO scene.



10. Results for OSL2

Figure 7 shows the logAUC results for the OSL2 
scene. It can be seen that the values of logAUC 
are much lower than for the other data cubes. The 
maximum value obtained here is 0.54. This is due 
to  the  complexity  of  the  scene:  the  targets 
inserted  into  the  scene  are  not  the  only 
anomalies. In an urban environment many objects 
can present  an anomalous  spectrum,  e.g.  cars, 
special  roof  materials,  etc.  The  comparison 
therefore  only  shows  how  well  the  different 
anomaly detection methods cope with this urban 
“clutter”.
From fig. 7 it  can be seen that  MMM gives the 
overall best results, followed by TLES, LRX and 
SOM. From the global RX methods, OSPRX gives 
the  best  results.  The  shadow mask  presents  a 
benefit for T4, which is the only target in shadow. 
For  this  target  GRX_SM gives  the best  results. 
Figure 8 shows the ROC curves obtained by the 
best  detector  (MMM)  for  the four  targets  in the 
OSL2 scene.  The figure shows that  80% of  the 
target  surface  is  detected  at  a  false alarm rate 
between 10-3 and 10-2. 

Figure 7: logAUC results for OSL2

The  first  detection  for  the  different  targets  is 
reached between a false alarm rate of 10-4 and 10-

3. Fig. 9 shows the detection image of the MMM 
detector. It can be seen that the “false alarms” are 
mainly  cars  and  structures  on  the  roofs  of 
buildings.



Figure 8: ROC curves obtained by MMM for the four targets in OSL2.

Figure 9: MMM detection images for OSL2

11. CONCLUSIONS      

This paper evaluates the performance of anomaly 
detection  methods  in  scenes  with  diverse 
complexity.  RX-based  and  segmentation-based 
AD  methods  were  applied  to  four  dataset, 
representing  a  rural  environment  with  sub-pixel 
targets,  a  rural  environment  with  part  of  the 
targets in shadow and an urban environment. 

For  sub-pixel  anomaly detection,  LRX gives  the 
best  results,  followed  by  MMM.  From  the 
investigated  global  RX-based  methods  OSPRX 
gives the best results.

For  the  rural  scene  with  part  of  the  targets  in 
shadow, MMM gives the best overall results. The 
targets in shadow are also well detected by GRX 

and  CRX  after  applying  shadow  mask.  The 
shadow mask however degrades performance of 
these  two  detectors  for  targets  that  are  not  in 
shadow. This phenomenon will be investigated in 
further work.

In the urban environment the SBAD methods give 
generally  better  results  than  the  RX-based 
methods.  Of  the  global  RX-based  methods, 
OSPRX gives the best  results. The overall  best 
result for the urban scene is obtained by MMM. 

The influence of pre-processing on the results 
was very evident. Further work will examine 
this further.                         
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