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Abstract. The aim of anomaly detection in hyperspectral image pracgss to
detect pixels in the hyperspectral datacube that exhileittspl signatures that are
exceptional in the investigated scene. The current papesiigates the detection
of anomalies in complex environments, i.e. urban and im@lscenes. The classi-
cal anomaly detection consists of a local measurement fefrdifces between the
spectral signature of the pixel and the average spectrasice of its surroundings.
In complex environments such an approach is not adequatudef the high
spatial variation of the background spectral features.réaghes based on global
image segmentation have already been proposed in literalis paper proposes
a two-level segmentation based approach. In the first st¢peofethod a scan-
ning window is moved over the image. At each position a fewattaristic spec-
tra are determined. This is done either by spectral clusjesi end-member selec-
tion methods. Then the image tile, defined by the curentiposdf the scanning
window, is classified using the determined spectra and drdyspectra to which
at least a given percentage of the image tile’s pixels igjassi, are stored. At the
end of the process the most characteristic spectra arenselandthin the collected
set of spectra. This is again done by clustering or endmes#ection. The final
anomaly detection result is determined using a distancssifiler or by spectral
unmixing, based on the selected characteristic spectm.nTéthod is tested and
evaluated on three hyperspectral scenes with diverse eaitypband acquired by
three different airborne sensors. For evaluation pupalsegroposed methods are
compared to two existing global image segmentation appesaeand to the local
Reed Xiaoli (RX) detector.

Keywords. Anomaly detection, segmentation, clustering, hyperspect

Introduction

Anomaly detection in hyperspectral data has received & lattention in the last years
for various applications. The aim of anomaly detection idetect pixels in the datacube
whose spectra differ significantly from the background sge¢n anomaly detection no
prior knowledge about the targets is assumed [1]. Anomalyadien methods in general
estimate the spectra of the background (locally or globalhd then detect anomalies as
pixels with a large spectral distance w.r.t. the determiveckground spectra. The Reed
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Xiaoli (RX) algorithm [2], which is the benchmark anomalyteletor for hyperspec-
tral imagery, models the local background by a single mutiate normal distribution.
When the scene is highly structured, the single Gaussiamgdson no longer adequate.
A possible solution is to use Gaussian mixture models. Tinetau of distributions, their
weights, and the parameters of the normal distributiondtege estimated by stochas-
tic expectation maximization (SEM) method [3]. Sub-spaetedtors form another in-
teresting family of anomaly detectors. In [4] several linead non-linear (kernelized)
sub-space detectors are compared and the Kernel Prinajplgp@nent Analysis based
detector (KPCA) [5] was found to give the best detection ltsdor the scenes inves-
tigated in that paper. All of the above mentioned methodeadetnomalies by consid-
ering the spectral difference between the current pixelisnidnmediate surroundings,
i.e. they are based on local statistics. In highly structeeenes such as urban scenes,
local detectors are likely to produce many (false) alarmes tuthe high variability of
surface materials. An alternative approach for anomalgaiemn, more suited for such
complex scenes, consists in applying a scene segmentaitmrigpthe actual anomaly
detection. Anomaly detection methods based on global ssegraentation have already
been proposed [6]-[9]. In these segmentation-based ayasetdctors (SBAD) the re-
sult of scene segmentation is used to estimate typical baokg spectral signatures.
Anomalies are then detected as pixels with a large spedstnte to the background
spectral signatures.

A possible disadvantage of global SBAD methods is the fattitha very heteroge-
neous scene some important background classes may be rniggedal segmentation.
The current paper therefore proposes anomaly detectie@dlmastwo-level image seg-
mentation. Two methods are proposed. The first one is baseldstering methods (two-
level clustering method or TLCM) and the second on end-mesdection (TLES). In
these methods local segmentation results are combineddtelii@racteristic spectra of
the background in the scene. In the TLCM the final anomalydiete step is a distance
classifier w.r.t. these spectra while the final TLES restuhiésresidue of linear unmixing
using the background end-members. This paper also propaseple anomaly detector
based on the local spectral distance histogram.

The proposed anomaly detection methods are applied onatéwgrerspectral dat-
acubes, acquired by different sensors over scenes withsghamplexity. The results
are compared to two global SBAD methods as well as to the RXotiat

1. Thedataset

The presented analysis was performed on a set of 3 hyperofisesnes with various
complexity, acquired by different airborne sensors. Tabpeesents the main character-
istics of the dataset. The first column is the name by whichstemes will be referred
further in this paper. The three sites show respectivelfyaarural village and an airfield
with aerospace industry. Figure 1 shows parts of the threresc In the data analysis, for
the Hymap data (OBP) the first and last channel were not usgtfoa8JO the dataset
was reduced in spatial resolution by a factor of 4 for comigoral reasons.



Table 1. Overview of the dataset

Name Site Sensor Nr of Waveband Spatial
name bands resolution
PAV Pavia (It) Rosis 102 430 nm - 834 nm 1.3m

BJO Bjoerkelangen (No) HySpex 80 410 nm - 984 nm 0.20m
OBP Oberpfaffenhofen(Ge)  Hymap 126 444 nm - 2.4B 4m

Figure 1. RGB color composite of parts of the different scenes. Léft, Rentre: BJO, right: OBP

2. Anomaly detection methods

This paper proposes three new anomaly detectors. The fiostiter based on a two-
level segmentation and the third one is based on local titatighe proposed methods
are described in 2.1 and 2.3.2. Their results are compardifféoent existing anomaly

detection methods that can be categorized into two clag$esfirst class contains the
global segmentation based methods, summarized in sectibari?l the second class
consists of methods based on local statistics. These arasdisd in section 2.3. For
each anomaly detector, its parameters are also given letasare referred to in the
comparative evaluation.

2.1. Two level segmentation-based anomaly detection

Two of the anomaly detection methods proposed in this pamebased on the same
philosophy: a scanning window runs over the image and at pasition of the window
the principle background spectra are determined usingraeeigtion method that is ei-
ther based on clustering (TLCM: two-level clustering methor end-member selection
(TLES: two-level endmember selection). The principle lgaokind spectra are respec-
tively the cluster centres or endmembers to which at leasinarmam percentag® P

of the pixels in the image tile are assigned by either clirggeor linear unmixing. The
stored spectra should thus represent the local image bmokdr At the end of the pro-
cess the most important spectra among the ones that weeel sase determined using
the same method (i.e. using either clustering or endmendbect®n). These are used
for the actual anomaly detection. Fig. 2 presents a geneeavimw of approach. Specific
details for TLCM and TLES are given below.

2.1.1. Two-level clustering method (TLCM)

In this method local clustering results are combined to fimel ¢tharacteristic spectra
of the scene’s background. The used clustering technigaekisneans with a cosine
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Figure2. General flow diagram of the two-level segmentation methods

distance. The anomaly detector value in every pixel is theimum of the spectral
distances between its spectrenand the background cluster cent@é ): At Lcm =
min; (distancés, cl(i))

In this paper the spectral angle (TLCM-SA) and an extendedrli encoding
(TLCM-BE) [10] are used as spectral distances. The parasmefehe method arevl P
which is described above, the number of classes in the finstaling stedN; and the
number of classes in the last clustering skep

2.1.2. Two-level endmember selection based method (TLES)

In this method typical endmembers of the background arermi@ted. Currently the
endmember selection is based on the N-FINDR algorithm [hlfhe first phase of the
TLES algorithm a fully-constrained linear spectral unmixis applied, i.e. the spectsa
in each pixel of the image tile is decomposed in terms ofMhg endmemberg; as:

Nem
min || E Eiwi —s || with0< wj < land E wi =1 (1)
wj : n

i=1 i

using a constrained least square approagis the abundance of endmembéar the
linear mixture. The final anomaly detection result is thédes of the estimated mixture
in each pixel:AtLes =|| s — ZiN:eT Eiw; || For the linear unmixing in the final step,
negative and superunity abundances are allowed [9], eecahdition 0< w; < 1is not
enforced in the last step. The parameters of the method mikaisio those in TLCM:
M P and the number of endmembers in the first and last applicafitimee endmember
selectionN7 andNo.



2.2. Global segmentation-based methods

2.2.1. The method of Blumberg (BLUM)

Two methods based on global image segmentation are inciadbd comparison. The
first method (BLUM) was proposed by Blumberg [6]. A princigaimponent analysis
(PCA) is performed on the complete hypercube. The first 2 P&#db are used to con-
struct a 2-D histogram, which is segmented by locating tallmaxima and attributing a
given percentage of background pixels to each local maxiféub2]. In the original pa-
per by Blumberg the local maxima in the 2D histogram are dgitexd using a scanning
window. In the current paper a method based on mathematmadhmology is used [13].
Parameters of the method are the number of BB [N) to construct the 2D histogram
and the structuring element siz8 £ § used for determining the local maxima.

2.2.2. Method based on self-organizing map (SOM)

The second method is based on a self-organizing map. A tr&@M is considered as
a representation of the background classes in the scen&] the[resulting U-matrix is
segmented based on its local minima’s. In the current papenalies are determined by
computing the spectral distances of the pixels from the S@Nswas suggested in [9].
The SOM was applied on the first three PCA and run using a squapeconsisting
of NsxNs hexagonal cells. It was optimized sequentially asmanly parameter iNs.
Contrary to [8] no spatial sub-sampling was applied here.

2.3. Local statistics-based methods

2.3.1. Local RX (LRX)

In LRX [2] the Mahalanobis distance is calculated betweendirrent pixel and its lo-

cal neighborhood defined by an outer window and separateutfie current pixel by a

guard window. In the implementation singular value decositpm is used for calculat-

ing the pseudo-inverse of the covariance matrix and the kdues in the diagonal matrix
are set to zero (cut-off is 99 % of the trace). Parameterseoifitethod are guard window
size GW g and outer window sizeQW §.

2.3.2. Local histogram-based method (LHIS)

The third anomaly detector proposed in this paper is basellonal spectral distance
histogram. The Euclidean distances are determined bettheespectra of the current
pixel and the pixels in its immediate neighborhood. The nloeecurrent pixel is different
from its local background, the higher the mean of the histogof these distances will
be. This mean is used as the detection value. Like with RX aghwindow is used.

3. Experimental setup

Because the results of each detector depend on the choitsepaframeters, the param-
eters were varied in a range that seemed reasonable andraadhe parameter setting
that yielded the best results were used in the comparisans&ts of parameter values
used in the analysis for the different detectors are predenttable 2. For instance for
BLUM 3x6 settings of parameters were examined.



Table 2. Parameter sets used for the different detectors

Method Parameter  Parameter RangeMethod  Parameter Parameter Range

TLCM-SA MP 5,10,15 BLUM SES 3,57

and N1 3-9 NBIN 20,50,100,200,500,100

TLCM-BE N2 2,4,6,8,10,15,20 SOM Ns 5, 10, 20, 40

TLES MP 35 LRX GWS 1x1,3x3,5x5,7x7
N1 5,10,15,20 LHIS ows 7x7,9x9,11x11,13x13
N2 2,4,6,8,10,15,20

4. Resultsand evaluation
4.1. Definition of ground truth

For a quantitative evaluation it is necessary to have grduwnti available about the
anomalies in the scene. In complex environments such as ortiadustrial scenes, it is
far from obvious to define the ground truth a priori. What ied@re anomalies in such
scenes ? In this work we have postulated a definition of anesdr each of the scenes.
For the PAV scene the ground truth consists of all cars ptéséine image. For the BJO
scene cars are also a prime target, but there seem to belsevenzolines visible in the
scene with a peculiar spectrum. These were also added toahadjtruth. For OBP the
aircraft on the airfield and trucks on the motorway were iathd as ground truth.

4.2. Comparative evaluation

For the quantitative evaluation, the detectors were agpiging all combinations of the
parameters presented in table 2. For each detection reRdteiver Operator Charac-
teristic (ROC) curve was generated based on the ground fatharea under the curve
(AUC) was used as a comparison value. Because the aim is tparenthe different
detectors, for each detector the best AUC was determinedadivearameter combina-
tions. Tables 3-5 show these values for the three test datd$ee parameter values cor-
responding to these best results are also shown. The ortlez phrameters is the same
asintable 2, i.e. for TLCM and TLES parameter set is defingd/dsN1,N2), for LHIS
and LRX:(GWS,0WS), for BLUM:(SES,NBIN) and for SOM:(Nsh brder to have an
idea of the impact of the parameter choice on the results @i datector, the average
and standard deviation of the AUG( C andoayc) over the complete parameter set is
also shown in the tables.

Table 3. Overview of the results for the PAV dataset

Method Best Opt. AUC oauc | Method Best Opt. AUC osauc
AUC param. AUC  param.

TLCM-SA 0770 (154,100 072 0.02] LRX 0673 (14) 064 0.015

TLCM-BE 0.756 (15,3,10) 0.739 0.008 BLUM 0.723  (5,200) 0.65 0.03

TLES 0.813 (3,15,6) 0.70 0.077] SOM 0.777 (40) 0.76 0.023

LHIS 0788  (3,7) 0.73  0.030




Table 4. Overview of the results for the BJO dataset

Method Best Opt.  AUC oayc | Method Best Opt. AUC oauc
AUC param. AUC  param.

TLCM-SA 0.738 (15,9,8) 0.61 0.045 LRX 0.786 1,4) 0.79 0.010

TLCM-BE 0.755 (10,6,15) 0.68 0.053 BLUM  0.711  (3,20) 0.62 0.064

TLES 0.751 (5,15,10) 0.52 0.097 SOM 0.644 (5) 0.61 0.023

LHIS 0.842 (3,7) 0.82 0.012

Table5. Overview of the results for the OBP dataset

Method Best Opt. AUC oayc | Method Best Opt. AUC osauc
AUC param. AUC  param.

TLCM-SA  0.93 (10,6,20) 0.83 0.072 LRX 0.684 1,9 0.65 0.019

TLCM-BE 097 (153,15) 0.94 0.015| BLUM 0.88 (7,500) 0.78  0.081

TLES 098 (5,10,20) 0.74 0.21 | SOM 0.86 (40) 0.83 0.018

LHIS 0871  (3,7) 0.85  0.011

The tables show that the best results for the different sitebtained by different
detectors. For the PAV site the TLES gives the best resaltsBJO the LHIS detector
gives the best results and for OBP the TLES and the two TLCMalets give the best
results. The RX detector, that is often presented as a bear&for anomaly detection,
does not perform that well in these scenes. This is probalyta the fact that the com-
plexity of the scene makes the single Gaussian assumpgerafgropriate. It would be
interesting to investigate class-conditional RX or a mdthased on Gaussian mixtures.

The global segmentation methods perform better than thed RX in two of the
scenes (OBP and PAV). In BJO the LRX detector gives betteltsed he reason for this
has to be investigated further.

As far as the influence of the results with the choice of patarsds concerned,
the two local statistics based methods have the most censiseéhaviour with respect
to varying the parameters. The two-level segmentation ousthresults are much more
parameter dependent.

The optimal parameter set is most similar across the scenésf LHIS detector.

For the PAV and BJO scene the best AUC values obtained arthi@s®.85, which
is not high. Because the AUC values were obtained as the aptimiue obtained over a
large set of parameters for most of the methods, this canendub to a bad parameter
setting. The low values are probably due to the fact that tieairgd truth comprises
only part of the “true” spectral anomalies. The “false algtfior each method should be
investigated more closely in order to gain a better speaftrdispatial understanding of
the results. This topic will be addressed in further invgegions.

5. Conclusions and further work
For the investigated datasets at least one of the anomadgtaet methods proposed in

this paper, gives better results then the two investigaettious based on global segmen-
tation and the local RX detector. However, the best detastdifferent for each of the



scenes. The two-level segmentation methods give goodsesiivo of the scenes, while
the LHIS detector gives the best results in one scene. Téiibas to be investigated
further.

For two of the scenes the best result obtained for the arearuthd ROC curve
(AUC) is less than 0.85. We believe this is due to the factttiground truth comprises
only part of the “true” spectral anomalies. In order to wetliis a closer examination
of the false alarms produced by the different methods wilkdeied out. In particular a
spectroscopic and spatial analysis of results will be paréal in order to gain a better
understanding of the difference between the various detestethods.

In the next months we also intend to make a more thourough adsgm of anomaly
detector results in complex scenes including other anowetigctors applied on more
test datasets. In particular linear and non-linear sulsespl@tectors, gaussian-mixture
based methods and methods based on support vector machiirieEsivwestigated.
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