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Abstract. The aim of anomaly detection in hyperspectral image processing is to
detect pixels in the hyperspectral datacube that exhibit spectral signatures that are
exceptional in the investigated scene. The current paper investigates the detection
of anomalies in complex environments, i.e. urban and industrial scenes. The classi-
cal anomaly detection consists of a local measurement of differences between the
spectral signature of the pixel and the average spectral signature of its surroundings.
In complex environments such an approach is not adequate because of the high
spatial variation of the background spectral features. Approaches based on global
image segmentation have already been proposed in literature. This paper proposes
a two-level segmentation based approach. In the first step ofthe method a scan-
ning window is moved over the image. At each position a few characteristic spec-
tra are determined. This is done either by spectral clustering or end-member selec-
tion methods. Then the image tile, defined by the curent position of the scanning
window, is classified using the determined spectra and only the spectra to which
at least a given percentage of the image tile’s pixels is assigned, are stored. At the
end of the process the most characteristic spectra are searched within the collected
set of spectra. This is again done by clustering or endmemberselection. The final
anomaly detection result is determined using a distance classifier or by spectral
unmixing, based on the selected characteristic spectra. The method is tested and
evaluated on three hyperspectral scenes with diverse complexity and acquired by
three different airborne sensors. For evaluation puposes,the proposed methods are
compared to two existing global image segmentation approaches and to the local
Reed Xiaoli (RX) detector.
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Introduction

Anomaly detection in hyperspectral data has received a lot of attention in the last years
for various applications. The aim of anomaly detection is todetect pixels in the datacube
whose spectra differ significantly from the background spectra. In anomaly detection no
prior knowledge about the targets is assumed [1]. Anomaly detection methods in general
estimate the spectra of the background (locally or globally) and then detect anomalies as
pixels with a large spectral distance w.r.t. the determinedbackground spectra. The Reed
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Xiaoli (RX) algorithm [2], which is the benchmark anomaly detector for hyperspec-
tral imagery, models the local background by a single multi-variate normal distribution.
When the scene is highly structured, the single Gaussian assumption no longer adequate.
A possible solution is to use Gaussian mixture models. The number of distributions, their
weights, and the parameters of the normal distributions arethen estimated by stochas-
tic expectation maximization (SEM) method [3]. Sub-space detectors form another in-
teresting family of anomaly detectors. In [4] several linear and non-linear (kernelized)
sub-space detectors are compared and the Kernel Principle Component Analysis based
detector (KPCA) [5] was found to give the best detection results for the scenes inves-
tigated in that paper. All of the above mentioned methods detect anomalies by consid-
ering the spectral difference between the current pixel andits immediate surroundings,
i.e. they are based on local statistics. In highly structured scenes such as urban scenes,
local detectors are likely to produce many (false) alarms due to the high variability of
surface materials. An alternative approach for anomaly detection, more suited for such
complex scenes, consists in applying a scene segmentation prior to the actual anomaly
detection. Anomaly detection methods based on global scenesegmentation have already
been proposed [6]-[9]. In these segmentation-based anomaly detectors (SBAD) the re-
sult of scene segmentation is used to estimate typical background spectral signatures.
Anomalies are then detected as pixels with a large spectral distance to the background
spectral signatures.

A possible disadvantage of global SBAD methods is the fact that in a very heteroge-
neous scene some important background classes may be missedin global segmentation.
The current paper therefore proposes anomaly detection based on two-level image seg-
mentation. Two methods are proposed. The first one is based onclustering methods (two-
level clustering method or TLCM) and the second on end-member selection (TLES). In
these methods local segmentation results are combined to find characteristic spectra of
the background in the scene. In the TLCM the final anomaly detection step is a distance
classifier w.r.t. these spectra while the final TLES result isthe residue of linear unmixing
using the background end-members. This paper also proposesa simple anomaly detector
based on the local spectral distance histogram.

The proposed anomaly detection methods are applied on several hyperspectral dat-
acubes, acquired by different sensors over scenes with diverse complexity. The results
are compared to two global SBAD methods as well as to the RX detector.

1. The dataset

The presented analysis was performed on a set of 3 hypercubesof scenes with various
complexity, acquired by different airborne sensors. Table1 presents the main character-
istics of the dataset. The first column is the name by which thescenes will be referred
further in this paper. The three sites show respectively a city, a rural village and an airfield
with aerospace industry. Figure 1 shows parts of the three scenes. In the data analysis, for
the Hymap data (OBP) the first and last channel were not used and for BJO the dataset
was reduced in spatial resolution by a factor of 4 for computational reasons.



Table 1. Overview of the dataset

Name Site Sensor Nr of Waveband Spatial

name bands resolution

PAV Pavia (It) Rosis 102 430 nm - 834 nm 1.3 m

BJO Bjoerkelangen (No) HySpex 80 410 nm - 984 nm 0.20 m

OBP Oberpfaffenhofen(Ge) Hymap 126 444 nm - 2.45µm 4 m

Figure 1. RGB color composite of parts of the different scenes. Left: PAV, centre: BJO, right: OBP

2. Anomaly detection methods

This paper proposes three new anomaly detectors. The first two are based on a two-
level segmentation and the third one is based on local statistics. The proposed methods
are described in 2.1 and 2.3.2. Their results are compared todifferent existing anomaly
detection methods that can be categorized into two classes.The first class contains the
global segmentation based methods, summarized in section 2.2 and the second class
consists of methods based on local statistics. These are discussed in section 2.3. For
each anomaly detector, its parameters are also given because they are referred to in the
comparative evaluation.

2.1. Two level segmentation-based anomaly detection

Two of the anomaly detection methods proposed in this paper are based on the same
philosophy: a scanning window runs over the image and at eachposition of the window
the principle background spectra are determined using a segmentation method that is ei-
ther based on clustering (TLCM: two-level clustering method) or end-member selection
(TLES: two-level endmember selection). The principle background spectra are respec-
tively the cluster centres or endmembers to which at least a minimum percentageM P
of the pixels in the image tile are assigned by either clustering or linear unmixing. The
stored spectra should thus represent the local image background. At the end of the pro-
cess the most important spectra among the ones that were stored, are determined using
the same method (i.e. using either clustering or endmember selection). These are used
for the actual anomaly detection. Fig. 2 presents a general overview of approach. Specific
details for TLCM and TLES are given below.

2.1.1. Two-level clustering method (TLCM)

In this method local clustering results are combined to find the characteristic spectra
of the scene’s background. The used clustering technique isa k-means with a cosine
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Figure 2. General flow diagram of the two-level segmentation methods

distance. The anomaly detector value in every pixel is the minimum of the spectral
distances between its spectrums and the background cluster centrescl(i ): AT LC M =

mini (distance(s, cl(i ))
In this paper the spectral angle (TLCM-SA) and an extended binary encoding

(TLCM-BE) [10] are used as spectral distances. The parameters of the method are:M P
which is described above, the number of classes in the first clustering stepN1 and the
number of classes in the last clustering stepN2.

2.1.2. Two-level endmember selection based method (TLES)

In this method typical endmembers of the background are determined. Currently the
endmember selection is based on the N-FINDR algorithm [11].In the first phase of the
TLES algorithm a fully-constrained linear spectral unmixing is applied, i.e. the spectras
in each pixel of the image tile is decomposed in terms of theNem endmembersEi as:

min
wi

‖

Nem∑

i=1

Ei wi − s ‖2 wi th 0 ≤ wi ≤ 1 and
∑

i

wi = 1 (1)

using a constrained least square approach.wi is the abundance of endmemberi in the
linear mixture. The final anomaly detection result is the residue of the estimated mixture
in each pixel:AT L ES =|| s −

∑Nem
i=1 Ei wi || For the linear unmixing in the final step,

negative and superunity abundances are allowed [9], i.e. the condition 0≤ wi ≤ 1 is not
enforced in the last step. The parameters of the method are similar to those in TLCM:
M P and the number of endmembers in the first and last applicationof the endmember
selectionN1 andN2.



2.2. Global segmentation-based methods

2.2.1. The method of Blumberg (BLUM)

Two methods based on global image segmentation are includedin the comparison. The
first method (BLUM) was proposed by Blumberg [6]. A principalcomponent analysis
(PCA) is performed on the complete hypercube. The first 2 PCA bands are used to con-
struct a 2-D histogram, which is segmented by locating its local maxima and attributing a
given percentage of background pixels to each local maximum[6,12]. In the original pa-
per by Blumberg the local maxima in the 2D histogram are determined using a scanning
window. In the current paper a method based on mathematical morphology is used [13].
Parameters of the method are the number of bins (N B I N) to construct the 2D histogram
and the structuring element size (SES) used for determining the local maxima.

2.2.2. Method based on self-organizing map (SOM)

The second method is based on a self-organizing map. A trained SOM is considered as
a representation of the background classes in the scene. In [8] the resulting U-matrix is
segmented based on its local minima’s. In the current paper anomalies are determined by
computing the spectral distances of the pixels from the SOM units as suggested in [9].
The SOM was applied on the first three PCA and run using a squaremap consisting
of NsxNs hexagonal cells. It was optimized sequentially andits only parameter isNs.
Contrary to [8] no spatial sub-sampling was applied here.

2.3. Local statistics-based methods

2.3.1. Local RX (LRX)

In LRX [2] the Mahalanobis distance is calculated between the current pixel and its lo-
cal neighborhood defined by an outer window and separated from the current pixel by a
guard window. In the implementation singular value decomposition is used for calculat-
ing the pseudo-inverse of the covariance matrix and the low values in the diagonal matrix
are set to zero (cut-off is 99 % of the trace). Parameters of the method are guard window
size (GW S) and outer window size (OW S).

2.3.2. Local histogram-based method (LHIS)

The third anomaly detector proposed in this paper is based ona local spectral distance
histogram. The Euclidean distances are determined betweenthe spectra of the current
pixel and the pixels in its immediate neighborhood.The morethe current pixel is different
from its local background, the higher the mean of the histogram of these distances will
be. This mean is used as the detection value. Like with RX, a dual window is used.

3. Experimental setup

Because the results of each detector depend on the choice of its parameters, the param-
eters were varied in a range that seemed reasonable and each time the parameter setting
that yielded the best results were used in the comparison. The sets of parameter values
used in the analysis for the different detectors are presented in table 2. For instance for
BLUM 3x6 settings of parameters were examined.



Table 2. Parameter sets used for the different detectors

Method Parameter Parameter RangeMethod Parameter Parameter Range

TLCM-SA MP 5,10,15 BLUM SES 3,5,7

and N1 3-9 NBIN 20,50,100,200,500,1000

TLCM-BE N2 2,4,6,8,10,15,20 SOM Ns 5, 10, 20, 40

TLES MP 3,5 LRX GWS 1x1,3x3,5x5,7x7

N1 5,10,15,20 LHIS OWS 7x7,9x9,11x11,13x13

N2 2,4,6,8,10,15,20

4. Results and evaluation

4.1. Definition of ground truth

For a quantitative evaluation it is necessary to have groundtruth available about the
anomalies in the scene. In complex environments such as urban or industrial scenes, it is
far from obvious to define the ground truth a priori. What indeed are anomalies in such
scenes ? In this work we have postulated a definition of anomalies for each of the scenes.
For the PAV scene the ground truth consists of all cars present in the image. For the BJO
scene cars are also a prime target, but there seem to be several trampolines visible in the
scene with a peculiar spectrum. These were also added to the ground truth. For OBP the
aircraft on the airfield and trucks on the motorway were indicated as ground truth.

4.2. Comparative evaluation

For the quantitative evaluation, the detectors were applied using all combinations of the
parameters presented in table 2. For each detection result aReceiver Operator Charac-
teristic (ROC) curve was generated based on the ground truth. The area under the curve
(AUC) was used as a comparison value. Because the aim is to compare the different
detectors, for each detector the best AUC was determined over all parameter combina-
tions. Tables 3-5 show these values for the three test datasets. The parameter values cor-
responding to these best results are also shown. The order ofthe parameters is the same
as in table 2, i.e. for TLCM and TLES parameter set is defined as(MP,N1,N2), for LHIS
and LRX:(GWS,OWS), for BLUM:(SES,NBIN) and for SOM:(Ns). In order to have an
idea of the impact of the parameter choice on the results of each detector, the average
and standard deviation of the AUC (AUC andσAUC) over the complete parameter set is
also shown in the tables.

Table 3. Overview of the results for the PAV dataset

Method Best Opt. AUC σAUC Method Best Opt. AUC σAUC

AUC param. AUC param.

TLCM-SA 0.770 (15,4,10) 0.72 0.021 LRX 0.673 (1,4) 0.64 0.015

TLCM-BE 0.756 (15,3,10) 0.739 0.008 BLUM 0.723 (5,200) 0.65 0.03

TLES 0.813 (3,15,6) 0.70 0.077 SOM 0.777 (40) 0.76 0.023

LHIS 0.788 (3,7) 0.73 0.030



Table 4. Overview of the results for the BJO dataset

Method Best Opt. AUC σAUC Method Best Opt. AUC σAUC

AUC param. AUC param.

TLCM-SA 0.738 (15,9,8) 0.61 0.045 LRX 0.786 (1,4) 0.79 0.010

TLCM-BE 0.755 (10,6,15) 0.68 0.053 BLUM 0.711 (3,20) 0.62 0.064

TLES 0.751 (5,15,10) 0.52 0.097 SOM 0.644 (5) 0.61 0.023

LHIS 0.842 (3,7) 0.82 0.012

Table 5. Overview of the results for the OBP dataset

Method Best Opt. AUC σAUC Method Best Opt. AUC σAUC

AUC param. AUC param.

TLCM-SA 0.93 (10,6,20) 0.83 0.072 LRX 0.684 (1,9) 0.65 0.019

TLCM-BE 0.97 (15,3,15) 0.94 0.015 BLUM 0.88 (7,500) 0.78 0.081

TLES 0.98 (5,10,20) 0.74 0.21 SOM 0.86 (40) 0.83 0.018

LHIS 0.871 (3,7) 0.85 0.011

The tables show that the best results for the different sitesare obtained by different
detectors. For the PAV site the TLES gives the best results, for BJO the LHIS detector
gives the best results and for OBP the TLES and the two TLCM detectors give the best
results. The RX detector, that is often presented as a benchmark for anomaly detection,
does not perform that well in these scenes. This is probably due to the fact that the com-
plexity of the scene makes the single Gaussian assumption less appropriate. It would be
interesting to investigate class-conditional RX or a method based on Gaussian mixtures.

The global segmentation methods perform better than the local RX in two of the
scenes (OBP and PAV). In BJO the LRX detector gives better results. The reason for this
has to be investigated further.

As far as the influence of the results with the choice of parameters is concerned,
the two local statistics based methods have the most consistent behaviour with respect
to varying the parameters. The two-level segmentation methods’ results are much more
parameter dependent.

The optimal parameter set is most similar across the scenes for the LHIS detector.
For the PAV and BJO scene the best AUC values obtained are lessthan 0.85, which

is not high. Because the AUC values were obtained as the optimal value obtained over a
large set of parameters for most of the methods, this can not be due to a bad parameter
setting. The low values are probably due to the fact that the ground truth comprises
only part of the “true” spectral anomalies. The “false alarms” for each method should be
investigated more closely in order to gain a better spectraland spatial understanding of
the results. This topic will be addressed in further investigations.

5. Conclusions and further work

For the investigated datasets at least one of the anomaly detection methods proposed in
this paper, gives better results then the two investigated methods based on global segmen-
tation and the local RX detector. However, the best detectoris different for each of the



scenes. The two-level segmentation methods give good results in two of the scenes, while
the LHIS detector gives the best results in one scene. This issue has to be investigated
further.

For two of the scenes the best result obtained for the area under the ROC curve
(AUC) is less than 0.85. We believe this is due to the fact thatthe ground truth comprises
only part of the “true” spectral anomalies. In order to verify this a closer examination
of the false alarms produced by the different methods will becarried out. In particular a
spectroscopic and spatial analysis of results will be performed in order to gain a better
understanding of the difference between the various detection methods.

In the next months we also intend to make a more thourough comparison of anomaly
detector results in complex scenes including other anomalydetectors applied on more
test datasets. In particular linear and non-linear sub-space detectors, gaussian-mixture
based methods and methods based on support vector machines will be investigated.
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