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ABSTRACT

Anomaly detection in hyperspectral data has received much
attention for various applications and is especially important
for defense and security applications. Anomaly detection
detects pixels in the hyperspectral data cube whose spectra
differ significantly from the background spectra. Most ex-
isting methods estimate the spectra of the (local or global)
background and then detect anomalies as pixels with a large
spectral distance w.r.t. the determined background spectra.
Many types of anomaly detectors have been proposed in lit-
erature. The most well-known anomaly detector is the RX
detector that calculates the Mahalanobis distance between
the pixel under test and the background. This paper inves-
tigates the sub-pixel detection performance of two classes
of anomaly detectors: the family of RX-based detectors and
the segmentation-based anomaly detectors. Representative
examples of each class are selected and results obtained on
three different datacubes are analyzed.

Index Terms— Anomaly detection, sub-pixel detection,
hyperspectral data

1. INTRODUCTION

Many types of anomaly detectors (ADs) have been proposed
in literature [1]. The benchmark anomaly detector is the
Reed-Xiaoli (RX) algorithm [2]. Different variations of this
method have been proposed in literature [3, 4, 5, 6, 7]. This
paper investigates the sub-pixel detection capabilities of two
classes of anomaly detectors by comparing their results on
a set of three datacubes with artificially inserted sub-pixel
anomalies with varying mixing ratio. The first class of ex-
amined detectors is the family of linear RX-based anomaly
detectors. The second class consists of segmentation-based
anomaly detection methods.

2. DATASET

The analysis was performed on a set of 3 hypercubes acquired
by 2 different airborne sensors. Each image is a part of a real
hyperspectral image in which anomalies are inserted artifi-
cially by linearly mixing the spectra of a green paint or fabric,

taken from another part of the image, with the original back-
ground pixel. The mixing ratio of the anomaly varies from
100% (full-pixel) to 10 or 5%. Fig. 1 shows RGB composites
of each of the examined datacubes with the full-pixel targets.
Table 1 presents the main characteristics of the dataset. The
first column is the name by which the scenes will be referred
further in this paper. As can be seen from the figure HAR and
CAM present a more structured background than OSL.

3. ANOMALY DETECTION METHODS

3.1. RX-based anomaly detectors

The RX detector [2] is a standard in anomaly detection. Ba-
sically the RX detector calculates the Mahalanobis distance
between the current pixel and the background:
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CB andµB are respectively the sample spectral covariance
matrix and the spectral mean of the background pixels;r is
the spectrum of the current pixel. Many different implemen-
tations of the RX detector have been proposed in literature.
They differ in the way the background covariance matrix and
background mean is defined and estimated and also in the
manner in which the inverse of the covariance matrix is im-
plemented.

• Global RX (GRX) In this paper the GRX detector es-
timates the covariance matrix and mean of the back-
ground using all pixels of the image and all spectral
bands. GRX thus has no parameters.

• Complementary Subspace Detector (CSD)In the
CSD the highest variance PCs are used to define the
background subspace and the others (the complemen-
tary subspace) the target subspace [4]. The pixel under
test (PUT) is then projected on the two subspaces and
the anomaly detector is the difference of the projection
onto the target subspace and the background subspace.
Spectral whitening is applied as pre-processing step.



Fig. 1. RGB composite of the original datacubes. From left to right: OSL, HAR, CAM

Name Site Sensor # Waveband Image # target Scene Type of
name bands (µm) Size pixels Description anomalies

OSL Oslo (No) HySpex 80 0.41-0.98 286x287 81 Park near Oslo green fabric
HAR Hartheim (Ge) Hymap 118 0.44-2.45 121x121 49 Agricultural area green paint
CAM Camargue (Fr) Hymap 119 0.44-2.45 150x100 45 Agricultural area green paint

Table 1. Overview of the dataset

• Sub-space RX (SSRX)In this paper SSRX is the GRX
applied after PCA and the background statistics are de-
termined on a limited number of PCA bands. Usually
the first PCs are discarded in SSRX.

• RX after orthogonal subspace projection (OSPRX)
In OSPRX the background is defined by the first com-
ponents of a Singular Value Decomposition. These first
components define the background subspace and the
data are projected onto the orthogonal subspace before
applying the RX detector [1].

• Partialling Out RX detector (PORX) [5] In this
method the effect of the clutter in a pixel is partialled
out component-wise by predicting each of its spec-
tral components as a linear combination of its high-
variance principal components. The detector applies
then a Mahalanobis distance on the residual.

• Local RX (LRX) In this case the covariance matrix
and mean is determined locally in a window around
the PUT. A double sliding window is used: A guard
window and an outer window are defined and the back-
ground statistics are determined using the pixels be-
tween the two. The covariance matrix is regularized
using diagonal loading before inversion [8]. The scale
factor for the diagonal loading used here is the median
of the eigenvalues of the covariance matrix calculated
on the complete image. Parameters of LRX are the
guard and outer window sizes (GWS, OWS).

• Quasi-local RX (QLRX) In quasi-local RX the global
covariance matrix is decomposed using eigenvec-

tor/eigenvalue decomposition [6]:CB = U Λ U
T

.
The eigenvectors are kept in the RX, but the eigenval-
ues are replaced by the maximum of the local variance
and the global eigenvalue. This means that the score of
the detector will be lower at locations of the image with
high variance (e.g. edges) than in more homogeneous
areas. Spectral statistical standardization is applied as
pre-processing step. The local variance is determined
in a double sliding window. Parameters are OWS and
GWS.

3.2. Segmentation-based anomaly detectors - SBAD

• Class-Conditional RX (CCRX) Although CCRX is
also an RX-based method, it is cataloged here under
SBAD because it is also based on image segmentation.
In CCRX the image is first segmented, the global co-
variance matrix and mean within each class is deter-
mined. The Mahalanobis distance between the PUT
and each of the classes is calculated. The final result
is the minimum of these distances. In the current pa-
per K-means clustering is used and the parameter of
the method is the number of classes (NC) used in the
clustering.

• Method based on Multi-normal mixture models
(MMM) A Stochastic Expectation Maximization (SEM)
algorithm [9] is used for fitting a multi-normal mixture
to the image for describing the background. A 7-
component mixture is used. The anomaly detector
detects pixels having a low probability according to the
estimated model. The MMM was applied after spectral



binning.

• Two-level endmember selection method (TLES)The
principle of this method [10] is the following: a small
scanning window (typically50 × 50 pixels) runs over
the image and at each position of the window the
principal background spectra are determined using a
segmentation method based on end-member selection.
Endmembers that correspond to a minimum percent-
age (MP) of the image tile are stored. At the end of the
process an endmember selection is again applied on
the stored endmembers and linear unmixing is applied
on the image. Anomalies correspond to pixels with a
large residue after unmixing. The parameters of the
method are the number of endmembers in the first and
last stage and MP.

• Method based on a Self-Organizing Map (SOM)A
trained SOM is considered as a representation of the
background classes in the scene. Anomalies are deter-
mined by computing the spectral distances of the pixels
from the SOM units [11]. The SOM was applied on the
first three PCA components and run using a square map
consisting of NsxNs hexagonal cells. It was optimized
sequentially and its only free parameter is Ns.

4. RESULTS AND DISCUSSION

The evaluation of the results is based on the receiver/operator
curves (RoC curves). These are curves that plot the prob-
ability of detection (Pd) versus the probability of false tar-
gets (Pf). The evaluation measure is the area under the curve
(AUC); the integral of the curve between Pf=0 and Pf=1. The
integral is calculated using a logarithmic scale for Pf. This
leads to much lower values than when a linear AUC is cal-
culated, but allows to distinguish to a much larger extent be-
tween behaviours at the low Pf range. For all the algorithms,
parameters were varied within a reasonable range and the
shown results are the best results obtained for the algorithm.

The influence of prior spectral whitening was also inves-
tigated. Only for GRX results are significantly influenced by
spectral whitening: for OSL the best results for GRX are ob-
tained without whitening, while for HAR and CAM the re-
sults with whitening are much better.

Fig. 2 presents the logarithmic areas under the RoC curve
(Logarithmic AUC) for the different detectors versus the mix-
ing ratio for OSL. LRX gives, by a good margin, the best re-
sults. At mixing ratios of 5% and 10% the CSD and PORX
give the second best results. From a MR=25%, the MMM
gives the second best results.

Fig. 3 shows the RoC curves for the CAM and HAR
scenes, for the lowest mixing ratio (MR=10%). In both cases
MMM gives a perfect detection (AUC=1). LRX give compa-
rable results (AUC=1 for CAM and slightly lower for HAR).
OSPRX and QLRX give the next best, and also very good,

results in both datasets. In all datasets TLES and SOM give
the least good results, significantly less good than GRX.

The preprocessing (e.g. PCA, spectral binning) applied
for some of the algorithms induces ”hidden” parameters
(number of PCs kept/discarded, number of spectral bands)
that can have a significant impact on the detection perfor-
mance. This point will be investigated in further work.

5. CONCLUSIONS

This paper investigates the sub-pixel detection performance
of linear RX-based anomaly detection methods and SBAD
methods. The LRX gives very good results in all datasets.
However, its results depend on the window sizes for outer
window and guard window. In the datasets with a structured
background the MMM detector gives the best results. The
MMM also give very good results in the dataset with a homo-
geneous background. It seems, however, as if the MMM is
not particularly well suited for detection of the smallest target
fractions/lowest target contrasts. From the global RX-based
methods OSPRX seems to give the best results. In a struc-
tured background QLRX also gives very good results. The
results of the TLES and SOM detectors are significantly less
good than those of GRX, these methods thus seem not well
adapted for sub-pixel detection. The results are obtained on
a limited data set. However, we find clear consistency in the
results across different scenes recorded with different sensors,
indicating that the results have a fair degree of generality.
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Fig. 2. Logarithmic AUCs versus the mixing ratio for the differentdetectors for the OSL dataset
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