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ABSTRACT

Anomaly detection in hyperspectral data has received much
attention for various applications and is especially important
for defense and security applications. Anomaly detection de-
tects pixels in the hyperspectral data cube whose spectra dif-
fer significantly from the background spectra [1]. Most ex-
isting methods estimate the spectra of the (local or global)
background and then detect anomalies as pixels with a large
spectral distance w.r.t. the determined background spectra.
Many types of anomaly detectors have been proposed in lit-
erature. This paper reports on a sensitivity study that tries to
determine an adequate pre-processing chain for anomaly de-
tection in hyperspectral scenes. The study is performed on
a set of five hyperspectral datasets and focuses on statistics-
based anomaly detectors.

Index Terms— Anomaly detection, pre-processing, data
reduction, spectral normalization

1. INTRODUCTION AND METHODOLOGY

Many types of anomaly detectors (ADs) have been proposed
in literature. In [2] an overview and an examination of their
inter- and intra-method consistency is presented. The im-
pact of parameter settings on the results of the detectors is
also examined there. In the current paper the influence of
pre-processing is investigated. For three well-established
statistics-based ADs (Local RX and PCA- and KPCA AD)
the influence of data reduction and spectral normalization is
studied. In [3] ways to improve the estimation of the co-
variance matrix under the small sample size condition are
examined. This is of interest for applying the Reed-Xiaoli
(RX) detector locally. That paper proposes a regularization
of the covariance matrix by diagonal loading. The current pa-
per also examines two other methods: one based on singular
value decomposition and one based on prior data reduction by
Principal Component Analysis (PCA) with a fixed threshold
on explained variance and eigenvalue. These methods are
compared between them and with methods based on a prior
data reduction by PCA, Maximum Noise Fraction (MNF)[4]
and Independent Component Analysis (ICA)[5]. The impact

of spectral normalization is also investigated. Examined nor-
malization methods are minimum/maximum normalization
(MM) and continuum removal (CR). The comparison is per-
formed on a set of five hyperspectral datasets. In two scenes
sub-pixel anomalies were artificially inserted. The aim of this
work is to determine an adequate pre-processing chain for
applying these ADs.

2. DATASET

The analysis was performed on a set of 5 hypercubes of scenes
with various complexity, acquired by 3 different airborne sen-
sors. Fig. 1 shows RGB composites of each of the examined
datacubes. The size of the images in the figure is not repre-
sentative for their relative spatial resolution, but theiraspect
ratio was preserved.

Table 1 presents the main characteristics of the dataset.
The first column is the name by which the scenes will be re-
ferred further in this paper. The first three datacubes were ac-
quired by 3 different airborne sensors. The ground truth was
manually indicated and consists of all vehicles (cars, trucks,
airplanes). The two last datacubes (HAR and CAM) are real
data from the Hymap sensor in which anomalies were inserted
artificially by linearly mixing the spectra of a green paint with
the original background pixel. For display purposes, in fig.1,
images with full-pixel paint spectra are shown. For the evalu-
ation of anomaly detection results, images with a mixing ratio
of 1/10 were used.

3. ANOMALY DETECTION METHODS

In this work three well-established statistics-based anomaly
detectors have been used. They are briefly described below.

3.1. Local RX detector(LRX)

The RX detector [6] is a standard in anomaly detection. In
RX a modified Mahalanobis distance is calculated between



Fig. 1. RGB composite of the original datacubes. From left to right: PAV, BJO, OBP, HAR, CAM

Name Site Sensor # Waveband Spat. Res. Scene
name bands (µm) (m) Description

PAV Pavia (It) Rosis 102 0.430-0.834 1.3 City
BJO Bjoerkelangen (No) HySpex 80 0.410-0.984 0.2(0.8) Rural village
OBP Oberpfaffenhofen(Ge) Hymap 126 0.44-2.45 4 Airfield with aerospace industry
HAR Hartheim (Ge) Hymap 126 0.44-2.45 4 Agricultural area
CAM Camargue (Fr) Hymap 126 0.44-2.45 4 Agricultural area

Table 1. Overview of the dataset
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CB and µB are respectively the spectral covariance matrix
and the spectral mean of the background pixels,N is the num-
ber of background pixels andr andRM = (r−µB) with r the
spectrum of the current pixel. If N is very large, the second
term can be neglected. In local RX (LRX) the background
statistics are determined from the local neighborhood of the
current pixel, defined by an outer window (OWS) and sepa-
rated from the current pixel by a guard window (GWS).

3.2. PCA-AD and KPCA-AD

In the PCA-based detector [7] the same dual-window idea is
used as with RX. The anomaly detection value is the projec-
tion separation value between OWS and the current pixel. The
projection vectors are formed by the first principal compo-
nent vectors calculated in the outer window (with a cut-off
percentage of99%). The kernelized version of this method
was also examined [7, 8] (KPCA-AD). In the current paper a
Gaussian radial basis function is used as kernel function and
an adequate value for the standard deviation of the Gaussian
σg is determined in each pixel as a function of the estimated
standard deviation of the spectral values in the outer window
σOW . It was empirically determined asσg = 100 σOW .

4. RESULTS AND DISCUSSION

The comparison of the different methods is based on the area
under the RoC curve (AUC).

4.1. Results for LRX

The local RX requires the estimation of the covariance matrix
in a small rectangle around the current pixel. For a reliablees-
timate of theCB′ a number of samples of about ten times the
number of bands would be desirable. However, the size of the
local windows that are typically used is much too small. This
leads to an ill-conditioned and unstable inverse [3]. Several
ways to overcome this problem are suggested in literature. In
this paper three regularization methods are examined:

• Prior PCA (PPCA): A PCA-based channel reduction
at fixed threshold is applied prior to RX detection. In
this paper the channels are cut at 99.99% of the total
variance or 0.01 % of the maximal eigenvalue.

• Diagonal Loading(DL ): a scaled identity matrix is
added toCB′ before inversion [9]. The scale factor is
the median of the eigenvalues of the covariance matrix
calculated on the complete image [3].

• Singular Value Decomposition (SVD): here the inverse
is replaced by a pseudo-inverse, using SVD. In the
pseudo-inverse the eigenvalues below a certain thresh-
old are set to zero. In this paper the eigenvalues are cut
at 99.9 % of the trace.



Site Spec. LRX results
Norm. Regularization type Results after data reduction

DL SVD PPCA PCA MNF ICA
AUC/BestAUC % AUC/BestAUC % AUC/BestAUC %

PAV None 0.76 0.64 0.72 0.74(16)/- - 0.74(14)/- - 0.74(14)/0.74(3,10) 1
MM 0.69 0.76 0.52 0.71(4)/0.72(3,6) 1 0.75(8)/0.75(2,7) 0 0.57(2)/- -
CR 0.58 0.48 0.52 0.64(2)/- - 0.71(8)/0.71(2,5) 0.68(6)/- -

BJO None 0.59 0.76 0.59 0.55(10)/0.56(3,10) 1 0.60(10)/0.64(3,4) 6 0.56(4)/0.61(2,3) 8
MM 0.70 0.54 0.52 0.61(10)/0.62(3,10) 2 0.72(4)/0.73(2,7) 1 0.73(6)/- -
CR 0.74 0.60 0.57 0.71(8)/0.72(2,11) 2 0.63(2)/0.72(3,10) 12 0.72(4)/0.73(2,7) 1

OBP None 0.85 0.62 0.66 0.65(2)/- - 0.77(12)/0.77(2,11) 0 0.76(4)/0.77(2,17) 1
MM 0.84 0.76 0.69 0.63(2)/0.65(2,3) 3 0.63(2)/- - 0.71(2)/- -
CR 0.62 0.54 0.60 0.60(2)/- - 0.69(6)/- - 0.70(2)/- -

HAR None 1.00 0.47 1.00 1.00(18)/- - 0.66(16)/- - 0.87(2)/- -
MM 1.00 0.49 0.56 1.00(18)/- - 0.93(10)/- - 0.70(10)/0.72(3,2) 3
CR 1.00 0.49 0.61 1.00(18)/- - 0.92(14)/- - 0.96(10)/- -

CAM None 1.00 0.52 0.55 1.00(18)/- - 0.66(16)/- - 0.67(18)/- -
MM 1.00 0.55 0.72 1.00(18)/- - 0.68(14)/- - 0.70(12)/0.71(2,11) 2
CR 1.00 0.52 0.57 1.00(18)/- - 0.91(16)/- - 0.98(14)/- -

Table 2. Overview of LRX results for the different scenes and pre-processing methods.

Columns 3 to 5 of table 2 show the results of these three
pre-processing method for LRX, for the 5 scenes and the three
spectral normalization methods: None, Min-Max (MM) and
Continuum Removal (CR). Presented results show a large dif-
ference between the LRX results for the three different pre-
processing methods. DL gives the best results in most cases.
In only one scene SVD gives better results (BJO). For verify-
ing whether prior data reduction improves results, three dif-
ferent data reduction methods were applied. The number of
bands, kept after data reduction, was varied between 2 and
20. The first number in columns 6,8 and 10 presents the high-
est obtained AUC and the number between brackets is the
corresponding number of selected bands. We also examined
whether it is better to discard the first or second band after
data reduction. If this gives better results, the result is given
after the slash and between bracket is the starting band and
the number of bands. Columns 7,9 and 11 give the percent-
age of gain in AUC when the starting band is changed from
1 to 2 or 3. For the LRX results after data reduction, in most
cases the best results are obtained starting from the first band
and the percentage gained when starting from band 2 or 3 is
mostly quite small. More important is the fact that none of
the data reduction based methods for LRX give better results
than the DL The only exception is BJO where the best results
are obtained after the SVM-based regularization. In all cases
the best results were obtained without applying any spectral
normalization. No consistent link could be found between the
best number of bands and the explained variance. This may
be intrinsic to the problem of anomaly detection because the
properties of anomalies are not related to the scene’s global
statistics.

4.2. Results for PCA-AD and KPCA-AD

Table 3 shows the results obtained for the PCA-AD and
KPCA-AD. Column three is the result obtained without any
data reduction, the other columns are analogous to the last
columns in table 2 and present the results after data reduc-
tion. Results for HAR and CAM are not shown due to paper
length limitations, but the conclusions are similar as for the
three other scenes. Contrary to the LRX case, for PCA-AD
and KPCA-AD the best results are obtained after MinMax
normalization except for the PCA-AD in the BJO scene. For
the results after PCA and MNF data reduction, it is preferable
for both detectors to discard the first one or two bands. For
ICA this is less important. The data reduction method that
gives the best results depends on the scene.

5. CONCLUSIONS

The influence of data reduction and spectral normalization on
the results of three local statistics-based anomaly detectors
was examined.

For local RX the method various covariance matrix reg-
ularization methods were also examined. The best results
for LRX are obtained using regularization by diagonal load-
ing and without any data reduction or spectral normalization.
Only in one dataset the SVD-based pseudo-inverse gives bet-
ter results; also without prior data reduction or normalization.

For the PCA- and KPCA-based detector the best results
are mainly obtained after MinMax normalization. For PCA
and MNF data reduction the first couple of bands should be
discarded when applying these two detectors. The data re-



Site Spec Data Reduction Method
Norm. None PCA MNF ICA

PCA-AD results
AUC/BestAUC % AUC/BestAUC % AUC/BestAUC %

PAV None 0.76 0.76(18)/0.78(3,2) 2 0.75(12)/0.78(3,6) 3 0.79(12)/0.79(3,10) 1
MM 0.86 0.86(18)/0.87(2,3) 1 0.81(8)/0.83(3,6) 2 0.68(2)/- -
CR 0.65 0.65(2)/- - 0.64(10)/0.69(3,4) 7 0.69(6)/0.70(3,4) 1

BJO None 0.80 0.80(16)/- - 0.74(10)/0.76(3,2) 23 0.66(2)/- -
MM 0.70 0.70(14)/0.79(2,13) 11 0.78(18)/0.80(2,15) 1 0.71(18)/- -
CR 0.78 0.76(16)/0.81(2,17) 6 0.79(10)/0.80(2,9) 1 0.77(2)/- -

OBP None 0.87 0.87(18)/0.88(3,16) 1 0.88(18)/0.88(2,15) 0 0.90(16)/0.91(3,14) 1
MM 0.89 0.89(16)/0.93(2,17) 4 0.87(16)/0.88(3,14) 1 0.90(6)/0.91(2,5) 1
CR 0.52 0.51(4)/0.55(2,3) 7 0.80(18)/0.82(3,16) 2 0.85(16)/0.85(3,14) 1

KPCA-AD results
PAV None 0.83 0.80(2)/- - 0.81(8)/- - 0.74(12)/- -

MM 0.86 0.85(2)/- - 0.83(8)/- - 0.53(2)/- -
CR 0.82 0.69(2)/- - 0.72(10)/- - 0.70(6)/- -

BJO None 0.75 0.76(2)/- - 0.76(12)/0.77(3,8) 1.8 0.63(10)/- -
MM 0.65 0.66(8)/0.76(2,5) 13 0.77(6)/0.82(3,4) 7 0.70(16)/- -
CR 0.74 0.70(16)/0.76(2,3) 8 0.74(10)/0.78(3,8) 5 0.76(4)/0.80(3,2) 4

OBP None 0.88 0.69(18)/0.77(3,4) 10 0.73(18)/0.85(3,2) 14 0.81(10)/0.82(2,9) 2
MM 0.91 0.74(6)/0.82(2,17) 10 0.78(10)/0.81(2,9) 4 0.95(6)/0.96(3,4) 1
CR 0.78 0.46(2)/0.68(3,2) 32 0.74(12)/0.80(2,11) 8 0.85(16)/0.85(3,14) 0

Table 3. Overview of the results of the PCA- and KPCA-based ADs for the different scenes and pre-processing methods.

duction method that gives the best results for PCA-AD and
KPCA-AD is scene dependent.

6. ACKNOWLEDGMENTS

The PAV scene was provided by Prof Gamba of Pavia Univ.
and acquired in the HySens campaign by DLR. Dr Skauli of
the Norwegian FFI provided the BJO data. HAR and CAM
were provided to us by Dr Achard of the French ONERA.

7. REFERENCES

[1] D.W.J. Stein, S.G Beaven, L.E. Hoff, E.M. Winter, A.P.
Schaum, and A.D. Stocker, “Anomaly detection from hy-
perspectral imagery,”IEEE Signal Proc. Mag., vol. 38,
pp. 58–69, Jan 2002.

[2] D. Borghys, E. Truyen, M. Shimoni, and C. Perneel,
“Anomaly detection in complex environments: Evalua-
tion of the inter- and intra-method consistency,” inProc.
1st IEEE WHISPERS, Grenoble, Aug 2009.

[3] S. Matteoli, M. Diani, and G. Corsini, “Different ap-
proaches for improved covariance matrix estimation in
hyperspectral anomaly detection,” inProc. Annual Meet-
ing. GTTI, 2009.

[4] A.A. Green, M. Berman, P. Switzer, and M.D. Graig, “A
transformation for ordering multispectral data in terms
of image quality with implications for noise removal,”
IEEE-TGRS, vol. 26, no. 1, pp. 65–74, 1988.

[5] A. Hyvaärinen and E. Oja, “Independent component
analysis: Algorithms and applications,” Tech. Rep., Lab.
of Computer and Information Science, Helsinksi Univ. of
Technology, Helsinki, Finland, 2000.

[6] I.S. Reed and X. Yu, “Adaptive multiband cfar detection
of an optical pattern with unknown spectral distribution,”
IEEE ASSP, vol. 38, no. 10, pp. 1760–1770, Oct 1990.

[7] H. Goldberg and N. Nasrabadi, “A comparative study of
linear and nonlinear anomaly detectors for hyperspectral
imagery,” in Algorithms and Techn. for Multi-, Hyper-,
and Ultraspectral Imagery XIII. 2007, vol. 6565, SPIE.

[8] B. Scholkopf, A.J. Smola, and K.R. Muller, “Kernel prin-
cipal component analysis,”Neural Computation, vol. 10,
pp. 1299–1319, 1999.

[9] B.D. Carlson, “Covariance matrix estimation errors and
diagonal loading in adaptive arrays,”IEEE Trans. Aerosp.
El.Syst., vol. 24, no. 4, pp. 397–401, Jul 1988.


