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ABSTRACT

Many anomaly detection methods, depending on various pa-
rameters, have been proposed in literature. Given the diversity
of available anomaly detectors, from an operational viewpoint
it is interesting to determine an efficient strategy to find the
best suited detector for a given application. This is not obvi-
ous, especially in scenes with a highly structured background.
The work presented here proposes a generic approach to the
problem by examining the following questions: How differ-
ent are the results of the various anomaly detectors ? Are the
parameters influencing the results significantly ? Are there
classes of methods sufficiently similar so that one can test
only one of each class and see which results are most ade-
quate for a given application ? What are the spectral/spatial
characteristics of the differences between methods ? Can one
predict which detector will give the best results for a given
application ? The current paper tries to answer the first three
questions by comparing results of different types of anomaly
detectors applied to different complex (urban, industrialand
harbor) scenes. The comparison is not in absolute terms be-
cause it does not rely on a priori ground truth. In stead the
detectors are compared relative to one another, the aim be-
ing to evaluate the similarities between the performance of
the detectors and the dependency of their results on the used
parameters, i.e. the inter- and intra method consistency.

Index Terms— Anomaly detection, hyperspectral, clus-
tering, segmentation

1. INTRODUCTION

Anomaly detection in hyperspectral data has received a lot of
attention for various applications. The aim of anomaly detec-
tion is to detect pixels in the hyperspectral datacube whose
spectra differ significantly from the background spectra. In
anomaly detection, in contrast to target detection, no a pri-
ori knowledge about the target is assumed [1]. Anomaly de-
tection methods in general estimate the spectra of the back-
ground (locally or globally) and then detect anomalies as pix-
els with a large spectral distance w.r.t. the determined back-
ground spectra. Many types of anomaly detectors have been

proposed in literature, each depending on several parameters.
The Reed Xiaoli (RX) algorithm [2], which is the benchmark
anomaly detector for hyperspectral imagery, models the local
background by a multi-variate normal distribution. Sub-space
detectors form a very interesting family of anomaly detectors.
In [3] several linear and non-linear (kernelized) sub-space
detectors are compared and the Kernel Principal Component
Analysis (KPCA) [4] based detector was found to be very
promising for the investigated scenes. All of these methods
detect anomalies by considering the spectral difference be-
tween the current pixel and its immediate surroundings. An
alternative approach for anomaly detection consists in apply-
ing a scene segmentation prior to the actual anomaly detec-
tion. Several types of segmentation-based anomaly detection
(SBAD) methods have been proposed [5]-[8]. These meth-
ods seem promising for anomaly detection in complex envi-
ronments [5, 8] because they estimate a set of background
spectra globally over the image. In this paper the similari-
ties between different anomaly detectors and the dependence
of their results on their parameters. Three classes of detec-
tors are examined. The first class is specifically designed
for complex environments and is based on a two-level clus-
tering scheme. The second class consists of global image
segmentation-based methods. The third class is based on lo-
cal statistics. From each class several detectors were selected
for the comparison. The test dataset consists of six datacubes,
acquired by four different airborne sensors, showing scenes
of diverse complexity.

2. DATASET

The presented analysis was performed on a set of 6 hyper-
cubes of scenes with various complexity, acquired by 4 dif-
ferent airborne sensors. Table 1 presents the main character-
istics of the dataset. The first column is the name by which
the scenes will be referred further in this paper.

3. ANOMALY DETECTION METHODS

The three classes of anomaly detectors examined in this pa-
per are briefly described below. The main parameters of each



Name Site Sensor Nr of Waveband Spatial Scene
name bands resolution Description

(µm) (m)
OBP Oberpfaffenhofen(Ge) Hymap 126 0.44-2.45 4 Airfield with aerospace industry
NEU Neugilching (Ge) Hymap 126 0.44-2.45 4 Semi-urban village
ANT Port of Antwerp (Be) AHS160 70 0.455-12.8 2.5 Part of petro-chemical port
KMT Kalmthout (Be) AHS160 70 0.455-12.8 2.5 Small airfield invegetated area
PAV Pavia (It) Rosis 102 0.430-0.834 1.3 City
BJO Bjoerkelangen (No) HySpex 80 0.410-0.984 0.20 Rural village

Table 1. Overview of the dataset

method are also given because they are used in the study of
intra-method consistency (section 4).

3.1. Class 1: Two-level clustering methods

In these methods [8] local segmentation results are com-
bined to find characteristic spectra of the background in the
scene. The anomaly detector is then based on a distance
classifier w.r.t. these spectra. The image is scanned with a
small (50x50) window. At each position, the correspond-
ing image tile is segmented using a clustering based on the
spectral angle as distance measure. The mean spectra of only
the clusters that represent more than a minimum percentage
(MPCT) of the image tile are stored. At the end of the process
the collected set of spectra is clustered again and the image
is classified w.r.t. the found cluster centres, using a distance
classifier. In this paper the spectral angle (TLCM-SA) and
an extended binary encoding (TLCM-BE) [9] were used as
distance classifiers. The parameters of this method are the
number of classes determined in the image tiles (NC1), the
number of spectra retained in the final clustering (NC2) and
MPCT.

3.2. Class 2: Global segmentation-based methods

Two methods based on global image segmentation are in-
cluded in the comparison. The first method was proposed
by Blumberg [5] (BLUM). A principal component analysis
(PCA) is performed on the complete hypercube. The first
2 PCA bands are used to construct a 2-D histogram, which
is segmented by locating its local maxima and attributing a
given percentage of background pixels to each local maxi-
mum [5, 10]. Parameters are the number of bins to construct
the 2D histogram (NBIN) and the size of the structuring el-
ement (NBH) used in the determination of the local max-
ima [8]. The second method is based on a self-organizing
map (SOM). A trained SOM is considered as a representation
of the background classes in the scene. In [6] the resulting
U-matrix is segmented based on its local minima. In the cur-
rent paper anomalies are determined by computing the spec-
tral distances of the pixels from the SOM units. The SOM

was applied on the first three PCA and run using a square
map consisting of NsxNs hexagonal cells. It was optimized
sequentially and its only parameter is Ns. Contrary to [6] no
spatial sub-sampling was applied here.

3.3. Class 3: Local statistics-based methods

3.3.1. Local RX (LRX)

In LRX [2] the Mahalanobis distance is calculated between
the current pixel and its local neighborhood defined by an
outer window (OWS) and separated from the current pixel by
a guard window (GWS). In the implementation singular value
decomposition is used for calculating the pseudo-inverse of
the covariance matrix and the low values in the diagonal ma-
trix are set to zero (cut-off is99% of the trace).

3.3.2. PCA and KPCA based sub-space detectors

In the PCA-based detector [3] the spectra of individual pixels
are projected on the first PCA bands obtained using the spec-
tra from the outer window. The same dual-window is used
as with RX. The cut-off percentage for the PCA bands was
99%. The kernelized version of this method was also exam-
ined [3, 4]. In the current paper a Gaussian radial basisfunc-
tion is used as kernel function and an adequate value for the
standard deviation of the Gaussianσg is determined in each
pixel as a function of the estimated standard deviation of the
spectral values in the outer windowσOW . It was empirically
determined asσg = 100 σOW .

3.3.3. Local histogram-based method (LHIS)

The Euclidean distances are determined between the spectra
of the current pixel and the pixels in its immediate neighbor-
hood [8]. If the current pixel is sufficiently different fromits
background, the histogram of these distances has a mean far
from zero. The mean is used as the detection value. Like with
RX, a dual window is used.
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Fig. 1. AUC for all methods and parameters, averaged over the six scenes. Left: average AUC, right: standard deviation.

4. RESULTS AND DISCUSSION

4.1. Experimental setup

In order to examine the level of dependence of each method
on its parameters, the detectors were run with different param-
eters and results compared. The same range of parameters for
each anomaly detection method was applied to each of the
datacubes because our main aim is to investigate the similar-
ity between anomaly detectors and their behavior w.r.t. their
parameters. If one is interested in detecting specific types
of anomalies, parameters should be set accordingly and may
depend on the image characteristics (e.g. on the spatial reso-
lution). The sets of parameter values used in the analysis for
the different detectors is presented in table 2. For instance for
BLUM 3x4 settings of parameters were examined.

Method Parameter Parameter Range
BLUM NBH 3,5,7

NBIN 50,100,200,500
LRX,LHIS GWS 3x3,5x5,7x7
PCA,KPCA OWS 9x9,11x11,13x13
TLCM-SA MPCT 5,10
TLCM-BE NC1 3,6,9

NC2 6,10,20
SOM Ns 5, 10, 20, 40

Table 2. Parameter sets used for the different detectors

4.2. Comparison method and analysis of results

The aim of this research is to compare the results of vari-
ous detectors for different parameter sets, independentlyof
a priori ground truth. Therefore the comparison will always
be between one detector with a given set of parameters and
the other detectors and sets of parameters. The1% detection
threshold for each of the detectors and for a given parame-

ter set is used to generate a ”ground truth”. The results of
the other detectors and/or parameter sets are evaluated with
respect to this ground truth. ROC (Receiver Operator Charac-
teristic) curves are determined and the area under the curves
(AUC) is used as comparison value. This analysis is made for
the six different scenes. Each of the matrices was analyzed
separately. The mean and standard deviation over all scenes
was also determined and is shown in fig. 1. Individual lines
and columns correspond to a single parameter setting for each
of the methods. A line in the matrix shows the AUC obtained
by the different methods and parameters when the results of
the detector mentioned on the line (with a given parameter
setting ) is used as ”ground truth”. The columns represent the
results of a detector when the other detectors serve to gen-
erate the ground truth. The left and right matrices in fig. 1
correspond resp. to the average similarity and the scene de-
pendence of the different methods for each parameter setting.

In fig. 2 the AUC values were averaged over all parame-
ters for each combination of detectors. This gives the average
consistency within each detector w.r.t. its parameters andthe
average consistency between methods. The standard devia-
tion matrix is also shown as an indication of the reliability
of the conclusions. The matrices of the average AUC values

Intra− and intermethod AUC values averaged for each method
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Fig. 2. AUC values for different detector combinations aver-
aged over all scenes and all parameters. Left: average AUC,
right: standard deviation.



are roughly symmetric. This means that the AUC of method
x w.r.t. ground truth extracted by methody is similar to the
AUC obtained for methody w.r.t. ground truth of methodx.

For the examined parameter ranges, all methods, except
the method of Blumberg exhibit a very high internal consis-
tency. The minimum AUC is0.985± 0.05 for all other meth-
ods when the parameters are varied (fig 2). For BLUM it is
0.85± 0.2. The main parameter that influences its the results
is NBIN. Although the TLCM methods show some variation
with parameters (fig. 1), the average internal AUC is still very
high (0.985± 0.05).

There are classes of methods that are globally very sim-
ilar. The most similar are PCA, LHIS and LRX: between
PCA and LHISAUC(PCA, LHIS) : 0.995 ± 0.003 and
AUC(PCA, LHIS, LRX) = 0.94± 0.02. KPCA is some-
what different to these methods, but these four methods are
globally the most similar (AUC = 0.89 ± 0.05). The two
types of TLCM also give similar results (AUC : 0.85 ±
0.08), but the SA method is more similar to other methods
and mainly to the SOM (AUC : 0.87 ± 0.09) than the BE
method (AUC : 0.79 ± 0.17). The correspondence between
TLCM BE and the other methods is very scene dependent.
For most scenes the method of Blumberg gives globally sim-
ilar results to the SOM method (AUC : 0.86 ± 0.13)). The
high standard deviation is due to the ANT site withAUC :
0.79± 0.14.

5. CONCLUSIONS

Results of 8 anomaly detectors were compared relatively to
one another using 6 hypercubes of diverse complex environ-
ments, acquired by 4 different sensors. Three classes of de-
tectors were considered. The first class (CL1) uses a two-level
clustering method (TLCM) based on two types of spectral dis-
tances (SA and BE). CL2 is based on global scene segmen-
tation and comprises the Blumberg method (BLUM) and a
method using a SOM. The third class (CL3) is based on local
statistics and consists of local-RX, a PCA- and KPCA-based
sub-space detector and a method based on the local spectral
distance. The results show most methods (except BLUM) to
be have little variation w.r.t. their parameters in the consid-
ered parameter range. Results also show that the detectors
within each of the classes give similar results, but different
from results of the other classes. Most similar are methods
in CL3. In CL2 results of BLUM, as well as its similarity to
SOM, vary with its parameters and are also scene dependent.
This should be examined further. The CL1 methods are less
similar than the detectors in the other two classes. Other spec-
tral distances in TLCM will be investigated. Further work will
examine the spectral/spatial characteristics of the differences
between detector classes.
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