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ABSTRACT proposed in literature, each depending on several parasnete

Many anomaly detection methods, depending on various pa-ne Reed Xiaoli (RX) algorithm [2], which is the benchmark
rameters, have been proposed in literature. Given thegiiyer anomaly detector for hyperspectral imagery, models thal loc
of available anomaly detectors, from an operational viempo background by a multi-variate normal distribution. Sulasp

it is interesting to determine an efficient strategy to finel th detectors forma very interesting family of anomaly detex:to
best suited detector for a given application. This is not-obv In [3] several linear and non-linear (kernelized) sub-gpac
ous, especially in scenes with a highly structured backeou detectors are compared and the Kernel Principal Component
The work presented here proposes a generic approach to thaalysis (KPCA) [4] based detector was found to be very
problem by examining the following questions: How differ- promising for the investigated scenes. All of these methods
ent are the results of the various anomaly detectors ? Are tHtetect anomalies by considering the spectral differenee be
parameters influencing the results significantly ? Are theréveen the current pixel and its immediate surroundings. An
classes of methods sufficiently similar so that one can tegtternative approach for anomaly detection consists ifyapp
only one of each class and see which results are most adéd @ scene segmentation prior to the actual anomaly detec-
quate for a given application ? What are the spectral/dpatidion. Several types of segmentation-based anomaly detecti
characteristics of the differences between methods ? Can 0fSBAD) methods have been proposed [5]-[8]. These meth-
predict which detector will give the best results for a given0ds seem promising for anomaly detection in complex envi-
application ? The current paper tries to answer the firsethreronments [5, 8] because they estimate a set of background
questions by comparing results of different types of angmalSPectra globally over the image. In this paper the similari-
detectors applied to different complex (urban, industiad ties between different anomaly detectors and the deperdenc
harbor) scenes. The comparison is not in absolute terms pet their results on their parameters. Three classes of detec
cause it does not rely on a priori ground truth. In stead théors are examined. The first class is specifically designed
detectors are compared relative to one another, the aim bfr complex environments and is based on a two-level clus-
ing to evaluate the similarities between the performance dering scheme. The second class consists of global image

the detectors and the dependency of their results on the usé@gmentation-based methods. The third class is based on lo-
parameters, i.e. the inter- and intra method consistency. ~ Cal statistics. From each class several detectors weretsele

for the comparison. The test dataset consists of six da¢scub
acquired by four different airborne sensors, showing stene
of diverse complexity.

Index Terms— Anomaly detection, hyperspectral, clus-
tering, segmentation

1. INTRODUCTION 2. DATASET

Anomaly detection in hyperspectral data has received & lot ofhe presented analysis was performed on a set of 6 hyper-
attention for various applications. The aim of anomaly dete cubes of scenes with various complexity, acquired by 4 dif-
tion is to detect pixels in the hyperspectral datacube whostrent airborne sensors. Table 1 presents the main characte
spectra differ significantly from the background spectna. | istics of the dataset. The first column is the name by which
anomaly detection, in contrast to target detection, no a prithe scenes will be referred further in this paper.

ori knowledge about the target is assumed [1]. Anomaly de-

tection methods in general estimate the spectra of the back- 3. ANOMALY DETECTION METHODS

ground (locally or globally) and then detect anomalies &s pi

els with a large spectral distance w.r.t. the determinedt-bac The three classes of anomaly detectors examined in this pa-
ground spectra. Many types of anomaly detectors have begrer are briefly described below. The main parameters of each



Name Site Sensor Nrof  Waveband Spatial Scene

name bands resolution Description

(pm) (m)

OBP  Oberpfaffenhofen(Ge) Hymap 126 0.44-2.45 4 Airfieldweierospace industry
NEU Neugilching (Ge) Hymap 126 0.44-2.45 4 Semi-urban gila
ANT  Portof Antwerp (Be) AHS160 70 0.455-12.8 2.5 Part of pethemical port
KMT Kalmthout (Be) AHS160 70 0.455-12.8 2.5 Small airfieldviegetated ared
PAV Pavia (It) Rosis 102  0.430-0.834 1.3 City
BJO Bjoerkelangen (No) HySpex 80 0.410-0.984 0.20 Rurkdgd

Table 1. Overview of the dataset

method are also given because they are used in the study whs applied on the first three PCA and run using a square
intra-method consistency (section 4). map consisting of NsxNs hexagonal cells. It was optimized
sequentially and its only parameter is Ns. Contrary to [6] no

3.1. Class 1: Two-level clustering methods spatial sub-sampling was applied here.

In these methods [8] local segmentation results are com-

bined to find characteristic spectra of the background in th8.3. Class 3: Local statistics-based methods

scene. The anomaly detector is then based on a distance

classifier w.rt. these spectra. The image is scanned with 3>+ Local RX (LRX)

fnrga}lrgsggiﬁé\iA;Insizvr:%erﬁfegicsri]ngojgﬁjns’t;nEgcg;rse;g?;dtr}m LRX [2] the Mahalanobis distance is calculated between
. fie current pixel and its local neighborhood defined by an

spectral angle as distance measure. The mean spectra of Orcl)le(ter window (OWS) and separated from the current pixel by

the clusters th‘.”“ repre_sent more than a minimum percenta%eguard window (GWS). In the implementation singular value

(MPCT) of the image tile are _stored. Atthe en.d ofthe pro.cesaecomposition is used for calculating the pseudo-invefse o

the collected set of spectra is clustered again and the 'Mag8e covariance matrix and the low values in the diagonal ma-

is classified w.r.t. the found cluster centres, using a digta | . .

classifier. In this paper the spectral angle (TLCM-SA) anclI rix are set to zero (cut-off i89% of the trace).

an extended binary encoding (TLCM-BE) [9] were used as

distance classifiers. The parameters of this method are tr§e3

number of classes determined in the image tiles (NC1), the

number of spectra retained in the final clustering (NC2) anq, the PCA-based detector [3] the spectra of individual jsixe

MPCT. are projected on the first PCA bands obtained using the spec-
tra from the outer window. The same dual-window is used

3.2. Class 2: Global segmentation-based methods as with RX. The cut-off percentage for the PCA bands was
99%. The kernelized version of this method was also exam-

Two methods based on global image segmentation are ifned [3, 4]. In the current paper a Gaussian radial basisfunc

cluded in the comparison. The first method was proposefion is used as kernel function and an adequate value for the

by Blumberg [5] (BLUM). A principal component analysis standard deviation of the Gaussiap is determined in each

(PCA) is performed on the complete hypercube. The firspixel as a function of the estimated standard deviation ef th

2 PCA bands are used to construct a 2-D histogram, whiclpectral values in the outer windawyy . It was empirically

is segmented by locating its local maxima and attributing &jetermined as, = 100 oow.

given percentage of background pixels to each local maxi-

mum [5, 10]. Parameters are the number of bins to construct

the 2D histogram (NBIN) and the size of the structuring el-3.3.3. |ocal histogram-based method (LHIS)

ement (NBH) used in the determination of the local max-

ima [8]. The second method is based on a self-organizinghe Euclidean distances are determined between the spectra

map (SOM). A trained SOM is considered as a representationf the current pixel and the pixels in its immediate neighbor

of the background classes in the scene. In [6] the resultingood [8]. If the current pixel is sufficiently different froits

U-matrix is segmented based on its local minima. In the curbackground, the histogram of these distances has a mean far

rent paper anomalies are determined by computing the speftom zero. The mean is used as the detection value. Like with

tral distances of the pixels from the SOM units. The SOMRX, a dual window is used.

.2. PCA and KPCA based sub-space detectors



Average intra- and intermethod AUC values StDev of intra- and intermethod AUC values over different scenes
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Fig. 1. AUC for all methods and parameters, averaged over the sixesc Left: average AUC, right: standard deviation.

4. RESULTS AND DISCUSSION ter set is used to generate a "ground truth”. The results of
the other detectors and/or parameter sets are evaluated wit
4.1. Experimental setup respect to this ground truth. ROC (Receiver Operator Charac

ristic) curves are determined and the area under the gurve

. t
In order to examine the level of dependence of each metho ! : . .
UC) is used as comparison value. This analysis is made for

on its parameters, the detectors were run with differeraipar tt%? six different scenes. Each of the matrices was analyzed

eters and results compared. The same range of parameters _
: ? separately. The mean and standard deviation over all scenes
each anomaly detection method was applied to each of the . : L - :
S . : . .~Was also determined and is shown in fig. 1. Individual lines
datacubes because our main aim is to investigate the similar

. . . . n lumn rre n ingl rameter ing for
ity between anomaly detectors and their behavior w.r.tir thea d columns co espor dtoas g€ para eter setting h. eac
. ) . o of the methods. A line in the matrix shows the AUC obtained
parameters. If one is interested in detecting specific typ )
: . the different methods and parameters when the results of
of anomalies, parameters should be set accordingly and m : . : )
e detector mentioned on the line (with a given parameter

depend on the image characteristics (€.g. on the Spatml.ressetting ) is used as "ground truth”. The columns represent th
lution). The sets of parameter values used in the analysis fo

the different detectors is presented in table 2. For ingténc results of a detector when the other detectors serve to gen-

BLUM 3z4 settings of parameters were examined. erate the ground truth. The left an_d _rlght matrices in fig. 1
correspond resp. to the average similarity and the scene de-

pendence of the different methods for each parametergettin
Method Parameterl Parameter Range )
BLUM NBH 357 In fig. 2 the AUC values were averaged over all parame-
NBIN 50 10(’) éOO 500 ters for each combination of detectors. This gives the @esra
_ consistency within each detector w.r.t. its parameterstiaad
LRX,LHIS GWS 3x3,5%5,7x7 average consistency between methods. The standard devia-
PCA,KPCA OowWSs 9x9,11x11,13x13 . ge cor y oo o
tion matrix is also shown as an indication of the reliability
TLCM-SA MPCT 5,10 of the conclusions. The matrices of the average AUC values
TLCM-BE | NC1 3,6,9 ' g
N C 2 6 1 1 0 1 2 0 Intra- and intermethod AUC values averaged for each method ‘StDev of Inra- and intermethod AUC values averaged for each method

£

SOM Ns 5,10, 20, 40 B N &
Table 2. Parameter sets used for the different detectors - =
4.2. Comparison method and analysis of results N N

The aim of this research is to compare the results of vari:

ous detectors for different parameter sets, independently

a priori ground truth. Therefore the comparison will alwaysFig. 2. AUC values for different detector combinations aver-
be between one detector with a given set of parameters arajed over all scenes and all parameters. Left: average AUC,
the other detectors and sets of parameters. IPheetection right: standard deviation.

threshold for each of the detectors and for a given parame-
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