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ABSTRACT

This paper describes a new method for classification of hyperspectral images for extracting carthographic objects.
The developed method is intended as a tool for automatic map updating. The idea is to use an existing map
of the region of interest as a learning set. The proposed method is based on logistic regression. Logistic
regression (LR) is a supervised multi-variate statistical tool that finds an optimal combination of the input
channels for distinguishing one class from all the others. LR thus results in detection images per class. These
can be combined into a classification image. The LR method that is used here is a step-wise optimisation that
also performs a channel selection. The results of the LR are further improved by taking into account spatial
information by means of a region growing method. The parameters of the region growing are optimised for
each class of interest. For each class the optimal set of parameters is determined. The method is applied on a
HyMap hyperspectral image of an area in Southern Germany and the results are compared to those of classical
methods. For the comparison a ground truth image was created by combining data from a cadaster map and a
digital topographic map.
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1. INTRODUCTION

For many remote sensing applications e.g. emergency cartography, disaster monitoring, damage assessment, etc.,
it is important to be able to quickly obtain an overview of the current situation. In particular the detection and
classification of man-made objects is very important. This paper presents part of the work done in a project that
aims to classify man-made objects using hyperspectral images and to investigate the complementarity between
hyperspectral and SAR data. The paper describes a new method for classification of hyperspectral data for
updating maps. The proposed method uses a statistical method - logistic regression - for channel selection and
to obtain a first classification. This classification is then improved using spatial information in a region growing
approach.

The method is supervised in the sense that existing digital maps are used. The maps serve as a the sole
basis to construct the learning and validation databases. The idea is to avoid having to undertake an extensive
ground truth mission for constructing the learning set. The classification is based on a multi-variate statistical
technique called logistic regression1 (LR). LR combines the different channels in a way that optimises the
distinction between one class and all the others. It thus results in a detector for each class. The detection
results are then combined into a classification image. The LR uses a step-wise method that only adds a channel
to the used set of channels if the improvement in detection caused by this addition is statistically significant.
LR thus implicitly performs a channel selection. The results of the detection and channel selection methods
are compared to those that are obtained by conventional hyperspectral methods. The developed method does
not require the use of laboratory spectra or extensive ground truth. It only requires an existing map on which
a limited number of points are identified for learning. In the conventional method for hyperspectral image
classification, the first step is a channel reduction based on Minimum Noise Fraction2 (MNF) or Principal
Component Analysis (PCA). These methods use the statistical variation in the data set but they do not take
into account information about the classes of interest to lead the channel selection. In order to compare the
results of our channel selection with the one obtained by MNF and PCA, a matched filter3 (MF) is applied to
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detect each of the classes of interest on the channels selected by the different methods. The results of these
matched filters is also compared to the results of the LR.

In the literature on classification of hyperspectral images, often pixel-wise methods are used because one
is interested in classes of very small spatial extent (typically 1 pixel or less). As we are interesting in cartho-
graphic applications of the hyperspectral images, the classes of interest are much larger and cover several pixels.
Therefore it is possible to use spatial information for improving the detection results of the LR as well as the
classification results. This is the purpose of the region growing. The idea is to select reliable starting points for
each of the classes and to grow these seed regions by comparing the spectra inside the already selected regions
to neighbouring pixels. The comparison of spectra is based on spectral distance measures. These are also used
in classification tools such as the various minimum distance classifiers (MD). Commonly used MD’s are based
on the Euclidean or Mahalanobis distance or on the spectral angle. However, in MD the spectra of pixels to be
classified are compared to the average spectrum of each class, as calculated from the complete learning set. In
the approach we propose, the average spectrum is estimated locally using the pixels that were already classified
with high degree of certainty. The starting pixels for the region growing are found by applying a threshold to
the detection image obtained from the LR. The region growing gradually merges surrounding pixels to these
starting kernels. In the paper we investigate a number of parameters for the region growing and for each class
determine the best combination. Considered parameters are the threshold T1, the spectral distance measure
used as a growing criterion and the normalisation method that is applied to the spectra prior to comparing
them. Evaluation of results for the different combination of parameters is based on a Figure-of-Merit (FOM)
for target detection. For the evaluation the complete validation set is used.

2. THE DATASET

2.1. Hyperspectral data

For this project HyMap data were acquired over the villages of Oberpfaffenhofen and Neugilching in the South of
Germany. The HyMap data were acquired by the German Aerospace Agency DLR and contain 126 contiguous
bands ranging from the visible region to the short wave infrared (SWIR) region (0.45−2.48µm). The bandwidth
of each channel is 15-18 nm. The spatial resolution is 4 m at nadir and the image covers an area of 2.6×9.5 km.
Four subsequent levels of pre-processing were applied: radiometric correction, geocoding, atmospheric correction
(using ATCOR44) and the “Empirical Flat Field Optimized Reflectance Transformation” (EFFORT5). The
pre-processing was done by the Flemish Institute for Technological Development (VITO). We received the data
corresponding to the four different levels of pre-processing and for the moment only the last level is used. Later
we intend to apply our methods to the different levels of pre-processed data in order to study the degradation
of the classification results when less pre-processing steps are applied. One of the final aims of the project is to
develop algorithms that require the least amount of pre-processing.

In all processing the first and last channel were discarded. The first contains too much noise while the last
is saturated.

2.2. Ground truth data

For this site we also acquired cadastral data (obtained from the “Bayerischen Vermessungsverwaltung”) of a
part of the village of Neugilching as well as digital topographic maps of the surroundings (ATKIS data from the
“Bayerishes Landesvermessungsambt”). These map data serve as a basis for building the learning and validation
set. The ground truth was acquired for a 2 × 1 km part of the image located in a residential area.

The topographic and cadaster maps were also used to construct the learning set for the logistic regression.
For each of the six classes of interest, i.e. Roads, Buildings, Paths, Railways, Forest and Background (other
vegetation), approximately 150 points were selected to constitute the learning set. In classical hyperspectral
classification methods, e.g. the spectral angle mapper6 (SAM) or spectral unmixing methods,7 the classes above
would be too general. A class like “Buildings” would for instance have to be sub-divided according to the color
of the roofs of the buildings. This would require a ground truth mission or an extensive image interpretation by
a human expert. As our intention was to use only information from existing maps, we can not create detailed
classes and didn’t use spectral unmixing or the SAM.



Figure 1 shows the dataset used in this paper. The left image shows part of the HyMap dataset in RGB
color combination, the right image is the ground truth image used for validation. The railway on the image is
in fact a tramway (an S-Bahn).

Figure 1. The dataset used in this paper. Left: HyMap image (R=635nm, G=558nm, B=497nm), Right: Validation
image(Red: Roads, Black: Buildings, Yellow: Paths, Orange: Railway, Dark Green: Forest, Light Green: Background

3. CLASSIFICATION METHOD

3.1. Overview

The first step in the classification is based on logistic regression. The logistic regression results in a detection
image per class. The values in the detection image for a given class correspond to the conditional probability
that the considered pixel belongs to that class. The detection images can thus be combined into a classification
image by assigning to each pixel the class for which the value in the detection image is highest. However, in
our approach we apply a threshold to the detection images for each class, giving the pixels that have a high
probability to belong to the class. These pixels are then used as starting regions for a region growing. The
region growing is based on spectral distance measures and exploits the local properties for the already selected
regions.

3.2. Logistic Regression

Logistic regression1 (LR) is developed for dichotomous problems where a target class has to be distinguished
from the background. The method combines the input features - the input channels in this case - into a
non-linear function, the logistic function, defined as:
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each class, based on learning data.

The logistic regression (i.e. the search for the β′
is) is carried out using Wald’s forward step-wise method using

the commercial statistics software SPSS. In the Wald method, at each step, the most discriminant channel is
added and the significance of adding it to the model is verified. This means that only the channels that



contribute significantly to the discrimination between the foreground and the background class are added to the
model. The logistic regression thus gives an optimal combination of a sub-set of input parameters for separating
one class from all others, implicitly performing a channel selection.

3.3. Region Growing

The approach until now is purely pixel based, i.e. only the information contained in a pixel is used to classify
the pixel. In the literature on classification of hyperspectral images, often pixel-wise methods are used because
one is interested in classes of very small spatial extent (typically 1 pixel or less). As we are interested in
carthographic applications of the hyperspectral images, the classes of interest are much larger and cover several
pixels. Therefore it is possible to use spatial information for improving the classification results. This is the
purpose of the region growing (RG). The idea is to select reliable starting points for each of the classes and to
grow these seed regions by comparing the spectra inside the already selected regions to neighbouring pixels. The
comparison of spectra is based on spectral distance measures. These are also used in classification tools such as
the minimum distance classifier (MD). However, in MD the spectra of pixels to be classified are compared to the
average spectrum of each class, as calculated from the complete learning set. In the approach we propose, the
average spectrum is estimated locally using the pixels that were already classified with high degree of certainty.

The starting regions are obtained by thresholding the probability images resulting from the logistic regression.
In these images the different selected regions are labeled. The idea is to try and expand the labeled regions
taking into account the local properties of the regions that are already classified. The principle of the region
growing is illustrated in fig. 2.
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Figure 2. Principle of the region growing.

The image is scanned and as soon as a labeled pixel is encountered the region grower starts. First the
average spectrum is determined in a rectangular neighbourhood around the starting pixel (the dashed rectangle
around the selected pixel in region 2 in the figure). Only pixels belonging to the same region are considered
in the calculation. For these pixels the maximal distance Dmax between each of the pixel’s spectra and the
average spectrum is also determined. This is used as a threshold for deciding whether a neighbouring pixel
should be added to the region or not. Pixels adjacent to the selected pixel that do not yet belong to the region
are investigated. The spectral distance D from their spectrum t to the average spectrum r of the region is
determined and if this distance is below the threshold (given Dmax multiplied by a factor DF ), the pixel is
added to the region:

D(t, r) < DF ∗ Dmax add the pixel
> DF ∗ Dmax do not add the pixel

(2)

The average spectrum and maximal distance are constantly re-evaluated while the region expands. As a result
of the region growing we save the distance measure map. In this way a classification image can be obtained by
assigning to each pixel the class for which this distance is minimal. If only a binary result of the RG would be
stored, conflicting classifications are more likely to occur.



3.4. Optimisation of the Region Growing Parameters

The result of the region growing depends on different parameters. We were interested to find the best selection
of these parameters for detecting each of the classes of interest. Considered parameters are:

• T1: the threshold applied on the LR detection image to create the starting regions of the region growing

• D: the spectral distance measure that was used to compare two spectra in the region growing (sect. 3.5).

• N: the normalisation that was applied to the spectra before performing the region growing. (sect. 3.6).

• DF: the multiplication factor for the threshold on spectral distance in the region growing

A figure of merit for target detection (sect. 4) is used as optimisation parameter.

3.5. Spectral Distance and Similarity Measures

Several spectral distance or similarity measures are proposed in literature. They all measure the distance or
similarity between two spectra, a reference spectrum ’r’ and test spectrum ’t’. The ones used in the current
paper are listed below. In the expressions below N is the number of bands.

• Euclidean Distance The euclidean distance is defined as:

Deucl(t, r) =

√√√√ N∑
i=1

(ti − ri)2 (3)

• Hamming Distance

The Hamming distance Dham is used in the classification method ’binary encoding’. It determines the
average value of the spectra and then counts the number of channels for which both spectra are either
above or below their respective averages.

• Spectral Angle

The spectra are represented as vectors in a N-dimensional space where N is the number of bands. The
distance measure is the spectral angle6 between the vectors.
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• Spectral correlation similarity

This is based on the Pearson statistical correlation. It shows how two vectors are linearly correlated and
should thus be independent of the strength of illumination. It is defined as:
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For the region growing distance measure, Dcor(t, r) = 1 − ρ(t, r) is used.



3.6. Normalisation Methods

For the parameter “spectral normalisation type” (NT) we considered the non-normalised spectra (NT=0) and
two normalisation methods:

• MinMax Normalisation (NT=1)

This normalisation rescales the spectrum in each pixel between the minimum and maximum value. Its
effect is a reduction of the influence of illumination.

• Continuum Removal (NT=2)

For continuum removal the convex hull of the spectrum is determined. The spectrum is rescaled between 0
and the convex hull. The effect of this normalisation is a magnification of small differences in the spectra,
i.e. small absorption peaks are high-lighted.

4. EVALUATION METHOD

The evaluation of the results is based on the ground truth image shown on the right in fig. 1. The detection
results were compared using ROC curves. These are plots of the probability of detection (Pd) versus the
probability of false alarms (Pf).

The optimisation parameter for determining the best combination of parameters in the region growing is a
figure-of-merit for target detection8 defined as:

FOM =
NDT

NFT + NTT
(5)

where NDT is the number of correctly detected target pixels, NFT the number of false alarm pixels and NTT

the number of true target pixels actually present in the image.

5. RESULTS AND DISCUSSION

5.1. Channel Selection

Fig. 3 shows the average spectra for the six classes as determined from the learning set. It also shows the
results of the channel selection performed by the logistic regression as short lines above and below the spectra.
The color of the lines corresponds to the legend. The number of channels NC selected for the different classes
is given in table 1.

Class NC Class NC Class NC
Roads 24 Buildings 19 Paths 9
Railways 16 Forests 2 Background 8

Table 1. Number of channels selected by LR for each class

Roads, buildings and railways are apparently the most difficult to detect as they require the largest number
of channels. For forests only 2 channels are selected. It is the intention to find a physical explanation for the
channel selection for each class. This is a topic for further work.
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Figure 3. Spectra derived from the learning set with the channels selected by LR for each of the classes.

5.2. Detection Results

In order to evaluate the detection results of the logistic regression based approach, we compare it with the
results of matched filtering. In fig. 4, for each class of interests, several ROC curves are shown:

1. The result after logistic regression

2. The result after MF using the channels selected by LR

3. The result of MF after PCA, using the channels corresponding to > 99.99% of the information (21
channels)

4. The results of MF after inverse PCA with the 22 channels of the PCA and using the channels given by
the LR. Note that the IPCA reconstructs a hyperspectral image with 124 channels, but reduces the noise
in the different channels.

5. The results of MF after MNF, using the channels corresponding to eigenvalues larger than 1 (30 channels)

For the calculation of MNF and PCA and for applying the MF, the commercial software ENVI5 was used. From
fig. 4 it appears that for roads, buildings, railways and background, the method based on logistic regression
gives the best results. For paths the results of matched filtering after PCA and MNF are better than all those
where the channel selection provided by LR is used. For paths, the channel selection provided by LR is therefore
inappropriate. For forests, MF after MNF gives the best results but the LR results and the two other methods
where the LR selected channels are used, are much better than the results of MF after PCA.

5.3. Results of the Region Growing

The results of the region growing using different distance measures and different normalisation methods are
compared in an objective manner, using the FOM, calculated from the validation image. Fig. 5 shows the
results of the optimisation. Each plot represents the results for one class for a fixed value of T1 = 0.95 except
for the class forests where T1 = 0.55 in order to have a reasonable detection level. In the plot the x-axis
represents the 4 spectral distances and the y-axis is the FOM. The three normalisation methods are represented
by different symbols (◦: NT=0, +: NT=1, �: NT=2). The parameter DF was varied from 1 to 4. This is
represented by different colors as well as a small horizontal shift, i.e. DF=1 is the most left for each spectral
distance, while DF=4 is the most to the right. It was verified that the choice of T1 doesn’t change the appearance
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Figure 4. ROC curves for the different classes of interest for the different detection methods

of the plots; only the scale of the FOM changes when T1 is changed. The best choice for T1 depends on the
class.

It is very hard to draw any general conclusions from the figures. The obtained FOM for the class “paths”
is very low. This probably means that the method based on logistic regression is not appropriate for this class.
We therefore discard the class in the discussion on the parameters of the region growing.

Concerning the choice of the spectral distance measure, the Hamming distance generally leads to the worst
results. The distance measures based on spectral angle (Dsam) and correlation (Dcor) are equivalent for all
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Figure 5. Results of the optimisation of the region growing for the different classes

classes. The Euclidean distance (Deuc) is more sensitive to the choice of the other parameters than the Dsam

and Dcor. The best normalisation method depends on the spectral distance that is used as well as on the
considered class. In many cases however, the continuum removal leads to lesser results. The results without
normalisation and with the MinMax normalisation, are equivalent. The influence of DF depends mainly on the
class: for buildings the best results are obtained for a low DF while for railways and forests the best results are
obtained for a high DF. This means that the initial points selected by the logistic regression are representative
for the spectra of the buildings, but they are too restricted for forests and railways. For roads the best results
are obtained for DF=2. These results will need to be analysed further.



Class T1 Class T1 Class T1
Roads 0.80 Buildings 0.95 Paths 0.50
Background 0.50 Railways 0.80 Forests 0.55

Table 2. Values of T1 used in the region growing for the different classes

5.4. Classification Results
For combining the results of the region growing into a classification image based on the images of spectral
distance, the same set of parameters has to be applied for each class. Because no single set of optimal parameters
can be identified for all classes, we ranked the best 10 combinations of parameters for each class and selected the
combination that appeared the most frequently. The resulting combination was (Dsam, NT=0, DF=2). This
was applied for constructing the classification image after region growing. For T1 the best value was determined
for each class. Table 2 lists the values for T1 used for the different classes.

The result was compared to that of the logistic regression as well as a classification using the “rule-images”
of the matched filter after MNF and PCA. Figure 6 shows the results of the classification for the different
methods. It appears from the figure that the proposed methods (LR and LR+RG) are both better than the
matched filter after MNF and after PCA. The PCA has many false alarms of the class railways, while MNF
also has many false alarms for paths. Results of LR and RG appear similar. In the RG results the grey color is
“unclassified”. Note that the LR presents many false alarms due to the classes forests and paths between the
houses in the village. As it is likely to find trees and paths in gardens, some of these might not be false alarms.

In order to obtain a quantitative evaluation, in table 3 the User’s (UA) and Producer’s accuracy (PA) for
the different classes and methods are presented. PA is the number of pixels correctly classified as a given class
to the total number that actually belongs to that class. PA is thus related to the probability of detection. UA
is the ratio of the number of pixels correctly classified as a given class to the total number of pixels classified
as that class. UA is related to the complement of the probability of false alarms. The table confirms that the
proposed methods are indeed better than the methods based on the matched filter. The region growing slightly
improves UA while it decreases PA for most classes. Contrary to what one could expect, the region growing
thus decreases the number of false alarms at the expense of the probability of detection. Note that after the
region growing most false alarms of paths and forests in the built-up area have become “unclassified”.

Method
LR Region Growing MF after PCA MF after MNF

Class PA UA PA UA PA UA PA UA
Roads 0.5464 0.3729 0.4823 0.3851 0.3558 0.2611 0.5506 0.3182
Buildings 0.8486 0.3530 0.8128 0.3369 0.3624 0.4505 0.3305 0.4034
Paths 0.3438 0.0087 0.1828 0.0090 0.1587 0.0083 0.3175 0.0102
Railways 0.5368 0.1345 0.5863 0.2317 0.7790 0.0443 0.7484 0.0510
Forests 0.6307 0.2313 0.3138 0.3808 0.6368 0.0142 0.1226 0.0038
Background 0.3417 0.9591 0.2898 0.9645 0.2738 0.9674 0.2838 0.9593

Table 3. Evaluation of the classification results: UA and PA for the different methods for each class

5.5. Further Work
Several topics for further work are foreseen:

• Establish a physical explanation for the channel selection that is found by the logistic regression for each
of the classes.

• Investigate other spectral distance measures for the region growing, e.g. the Mahalanobis and Battacharya
distance or the Spectral Information Divergence.9



Figure 6. Classification results: upper-left: results of logistic regression upper-right: region growing results, lower-left:
MF after PCA, lower-right: MF after MNF

• Investigate the influence of the pre-processing level on the results of the logistic regression

• Examine the results of the logistic regression when the parameters are learned in one region and the
functions are applied to a nearby region.

6. CONCLUSIONS

A new method for the classification of hyperspectral images is presented. The aim of the method is to extract
carthographic objects from the images for map updating purposes. The classification is based on logistic
regression and uses existing digital maps for learning. The logistic regression gives a detection image per class.
These can then be combined into a classification image. The article also investigates the improvement of the
detection results by region growing based on various spectral distances. The influence of the different parameters
of the region growing on the detection results were investigated. However it was not possible to identify a single
best combination of parameters. It was shown that the optimal set of parameters for the region growing depends
on the considered class as well as on the type of spectral distance that is used. For most classes the spectral
distance based on the spectral angle gave the best results. The classification by logistic regression was compared
to the results of rule-image classification of the matched filter results after MNF and PCA. The LR results were
significantly better.
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