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Abstract— This paper describes a new method for supervised
classification of multi-channel SAR data. Multi-channel SAR data
(multi-frequency, polarimetric, interferometric) offer a multitude
of different types of information that can be used, among others,
as input features for classification. This paper proposes a way to
combine this information into a supervised classification scheme
using statistical methods. Because the different input features
have very diverse statistical distributions classic feature selection
and classification methods are inadequate. We therefore devel-
oped a method based on logistic- and multi-nomial regression.
These two statistical methods are less dependent on the statistical
distribution of input data and which combine feature selection
with the search for an optimal combination of features. The
classification method proposed here is supervised: a number of
classes was defined and examples of each class were gathered.
These were divided into a learning and a validation set. The
proposed classification method is hierarchical: classes which are
difficult to distinguish are grouped. In a first step these groups
are separated from each other. In sub-sequent steps, the groups
are further sub-divided. The separation between different groups
or classes is based on logistic and multi-nomial regression, which
find the best combination of features to make the separation and
at the same time perform a feature selection. The combination
results in a “detection image” for each class. Majority voting
is used to combine the detection images into a classification
map. The method is applied to a project on humanitarian
demining. For that project a set of multi-channel SAR data,
including polarimetric and dual-pass interferometric data at
different frequencies, was acquired using the E-SAR system of
the German Aerospace Centre (DLR). The aim was to classify
different land-cover classes that are relevant for deciding whether
a region is potentially mined or not. Classes typically include
”Abandoned Agricultural Land”, ”Used Fields”, etc. The classes
were defined by interviewing experts of a Mine Action Centre.
A ground survey mission collected the necessary ground-truth
information for each class. Results of the proposed classification
method are shown and evaluated.

Index Terms— Logistic Regression, Multi-Channel SAR Im-
ages, Multi-Nomial Regression, Supervised Image Classification
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I. INTRODUCTION

This article presents a new method for supervised classifica-
tion of multi-channel SAR data. The method was applied to a
project on humanitarian demining. A set of multi-channel SAR
data, including polarimetric and dual-pass interferometric data
at different frequencies, was acquired using the E-SAR system
of the German Aerospace Centre (DLR). The images from
different bands (P, L , C and X-band) cover the same region
but each band has a different spatial resolution. Geocoding
information was also provided. The relevant land-cover classes
were defined by interviewing experts of a Mine Action Centre.
A ground survey mission collected the necessary ground-truth
information for each class.

For classification of polarimetric SAR images, several unsu-
pervised approaches have been proposed, based on various po-
larimetric decomposition methods [1]. The most used method
is the decomposition of Cloude and Pottier [2]. In this method
the polarimetric information is converted into three parameters
(entropy H, α-angle and Anisotropy A) to which the authors
have associated an elegant physical interpretation. They sub-
divided the feature space formed by the three parameters into
regions that correspond to distinct scattering behaviours. How-
ever, the exact borders of these different regions depend on
many factors. Different methods were suggested to make these
borders flexible. In [3] the samples in the feature space are
regrouped based on the complex Wishart distribution. In [4] a
supervised classification method based on neural networks and
fuzzy logic is used to learn the class borders from the available
learning samples. The advantage of the approach proposed
in [4] is that other input features can be easily added in
order to increase the discrimination ability of the classification.
In [4] the largest eigenvalue (λ1) of the polarimetric coherence
matrix and the interferometric coherence ρ are added.

We recently developed [5] an approach based on logistic
regression, which considers each class separately and tries to
distinguish it from all others by combining the input features
into a non-linear function, the logistic function. The method
allows adding features easily. Moreover, for each class a
”detection image”, with a well-defined statistical meaning,
is obtained. The value at each pixel in the detection image
for the learning set represents the conditional probability that
the pixel belongs to that class, given all input features. The
detection images are interesting as such for the human photo
interpreters working at the Mine Action Centre. The logistic
regression was carried out using Wald’s forward, step-wise
method. In this method, at each step, the most discriminant
feature is added and the statistical significance of adding it to
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the model is verified. The method thus implicitly performs a
feature selection.

In order to improve the developed method, in this paper
we introduce a hierarchy in the classification: classes that
are easily distinguished are detected first and sub-sequent
steps of the classification only consider remaining classes.
Furthermore we replaced the logistic regression by a multi-
nomial regression for distinction between more than two
classes or groups of classes. Multi-nomial regression takes
into account constraints between all classes involved in the
classification step and gives better results.

II. INPUT DATA

A. Overview of the SAR data set

The method was applied to a project on humanitarian dem-
ining for which the German Aerospace Center DLR acquired
E-SAR data at 4 different frequencies. P-band and L-band are
full-polarimetric, dual-pass interferometric, while due to flight
time limitations, for C- and X-band only VV-polarisation is
available. All data were delivered as SLC data and geocoded
amplitude data. They were acquired from parallel flight paths
and cover approximately the same region. However the pixel
spacing in the SLC data of different bands is not the same.
Together with the data, we therefore also received geocoding
matrices that enable us to extract polarimetric and interfero-
metric information using the SLC data and geocode the results
afterwards.

B. Derived feature set

From the input SAR data several input features were de-
rived:

• Radiometric information: values in the speckle reduced
log-intensity images of each frequency and each polarisa-
tion (8 features). The speckle reduction method [6] com-
bines a context-based locally adaptive wavelet shrinkage
and Markov Random Fields to limit blurring of edges,
by incorporating prior knowledge about possible edge
configurations.

• Polarimetric information: provided by the parameters of
the Cloude decomposition [2] (H, α -angle and λ1). λ1

is the largest eigenvalue of the polarimetric coherence
matrix. These are available in P- and L-band, resulting in
6 features.

• Interferometric information: From the pairs of dual-pass
interferometric images the interferometric coherence (ρ)
is calculated. This results in 2 features (ρL and ρP )

• Spatial information: Some basic spatial information is
included in the feature list. It consists of the results of a
bright and a dark line detector [7]. The line detector uses
a multi-variate statistical test for detecting line structures
and is applied on the 8 speckle reduced, geocoded, log-
intensity images. These input channels are treated by the
detector as a single vectorial input and a single result is
obtained for the dark lines and another for the bright lines
(2 features).

The polarimetric and interferometric features were determined
on the slant-range SAR data and then geocoded. The speckle

reduction was applied on the geocoded images. In total 18
input features are available.

C. Ground-truth

A ground survey mission was organised to acquire ground
truth, i.e. the relevant classes of land cover in the scene were
determined and for each of them examples were given. The
ground-truth objects were then divided into a learning set and
a validation set. Both sets contain around 200 objects from the
test-site. The learning set was used to determine the parameters
of the logistic and multi-nomial regression at different stages
of the classification. Table I shows the classes used for the

TABLE I

CLASSES USED IN THE LEARNING SET

Nr Name Nr Name
C1 Abandoned Land C7 Roads
C2 Fields in use without Vegetation C8 Pastures
C3 Fields of Barley C9 Forests
C4 Fields of Wheat C10 Water
C5 Fields of Corn C11 Hedges/Shrubs
C6 Residential area C12 Radar Shadows

learning set. For the validation set some classes are merged
because their distinction does not give relevant information to
the deminers. The different types of crops (C3, C4 and C5) are
merged into a class ”Fields in use with vegetation” and class
C9 (forests) is merged with C11 (hedges and shrubs). The
reason to keep them separate for the learning step is to avoid
complicating the classification task by having heterogeneous
classes.

III. STATISTICAL METHODS

The classification scheme uses two statistical methods:
logistic regression and multi-nomial regression. Both methods
offer a way to combine the different input features while at
the same time performing a feature selection.

A. Logistic Regression

Logistic regression [8] is developed for dichotomous prob-
lems where a target class has to be distinguished from the
background. The method combines the input parameters into
a non-linear function, the logistic function, defined as:
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(x,y) belongs to the considered class (target class) given the
vector of input features (

−→
F ) at the given pixel. The logistic

regression (i.e. the search for the β′
is) was carried out using

Wald’s forward step-wise method. In this method, at each step,
the most discriminant feature is added and the significance
of adding it to the model is verified. This means that not
all features will necessarily be included into the model. The
logistic regression thus gives an optimal combination of a sub-
set of input parameters and also provides an objective method
for determining the impact on the classification of adding each
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parameter to the model. Applying the obtained combination to
the complete image set, a new image - a “detection image”
- is obtained, in which the target class under consideration is
bright and the background dark.

B. Multi-Nomial Regression

Multi-nomial regression is very similar to logistic regres-
sion. It is used to distinguish more than two classes. In the
multi-nomial regression all classes are considered at the same
time. The last class is the so-called baseline class (j∗). This
time a set of combinations of input features is found such that
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for the non-baseline classes, where the sum in the denominator
is over all classes, except the baseline class, and:
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for the baseline class.

IV. IMAGE CLASSIFICATION METHOD

A. Classification Tree

Fig. 1 presents an overview of the classification tree used
in this project. At the first level logistic regression (LR) is
used to separate the group of “Forests and Hedges” from
all other classes. Forests and hedges are separated from each
other using again logistic regression. For separating the other
classes multi-nomial regression (MNR) is used. The advantage
of the hierarchical approach is that at each level the full
discriminative power of the input features is focussed on a
sub-problem of the classification.

Input Features

Forests or Hedges Other Classes

HedgesForests

Wheat Corn"Bare"

Abandoned
Land

Fields
No Veg

Barley Residential
C6

C10

Water Radar
Shadows

C12

"Smooth"

C7

Roads

MNR

LR

LR

MNR

MNR

Pastures

C9

C1 C8

C11

C2

C4C3 C5

Fig. 1. Overview of the classification tree.

B. Majority voting

When the logistic or multi-nomial regression is applied to all
pixels of an image set, a “detection image” for the considered
class(es) is obtained. The pixels in these detection images
represent the conditional probability that the pixel belongs to
the class given all input features. The detection images are
combined into a classification using majority voting, i.e. in
a neighbourhood (typically 3x3) of each pixel the sum of

conditional probability for each class is determined and the
pixel is assigned to the class corresponding to the highest
sum. Note that this majority voting has to be performed at
each level of the tree and the derived decision is used as a
mask for the classification on the next level. Although both
methods give conditional probabilities it is not possible to
compare probabilities obtained at different levels of the tree.

V. RESULTS AND DISCUSSION

In Figure 2 the results of the method are shown: figure A is
the polarimetric L-band E-SAR image after speckle reduction
of a part of the test site, in fig. B. the detection image for
the class “Abandoned Land” is shown and Fig. C is the
final classification result. Using the validation set a confusion
matrix was calculated (table II). From this matrix statistics
were calculated for the validation and also shown in the table.
Besides the conditional kappa coefficients (κ) [9] calculated
per class, the user’s and producer’s accuracies (UA and PA)
are also given in table II. The UA is the ratio of the number
of pixels correctly classified as a given class i to the total
number of pixels belonging that class, i.e. the diagonal element
of the confusion matrix divided by the sum of the elements
in the column. This is related to the probability of detection.
The PA is the complementary, i.e. the ratio of the number of
pixels correctly classified as a given class i to the total number
classified as that class. This is related to the probability of false
alarms.

UA(Ci) =
Conf(i, i)

∑N

j=1
Conf(i, j)

(4)

PA(Ci) =
Conf(i, i)

∑N

j=1
Conf(j, i)

(5)

where N is the number of considered classes. A high UA
and a low PA means that most of the pixels belonging to the
considered class have been correctly classified but that there
are many false alarms.

Table II shows that good results are obtained for most
classes. An important exception is C2 (Fields in use without
vegetation). This class seems to be heavily confused with
C8(pastures). Most pixels belonging to class C2 are classified
as C8, while some of the pixels belonging to C8 are classified
as C2. This explains the low PA for C2 and the low UA
for C2 and C8. The relatively low value for the PA of C6
(residential areas) is probably due to the fact that these regions
are not homogeneous for a SAR. The residential areas indeed
include buildings, with double bounce reflectors and shadow
areas as well as empty spaces between the buildings that
can contain vegetation or asphalted surfaces. The introduction
of textural features might reduce this problem. The low UA
for roads (C7) is due to majority voting. While the majority
voting is useful for region-like objects, it presents problems
for narrow linear features. A more intelligent generalisation
method should be used as the final step in the classification. If
the majority voting would be replaced by a context dependent
method such as Markov Random Fields (MRF) [10], [11],
it is expected to improve the results for the linear objects.
This will be investigated further. Note that most of the river
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Fig. 2. Results of the method: A: part (1.3km × 1.5 km) of the speckle reduced polarimetric L-band image (R:HH, G:HV, B:VV) c©DLR, B: “detection
image” for abandoned land, C: classification results

at the left of the image has been classified as shadow. This
was expected because the river is bordered by trees and the
radar look direction is from right to left. It does not influence
the confusion matrix because both learning and validation set
were constructed in order to avoid selecting shadow regions.
However, for the creation of a land-use map it would be
interesting to “infer” the presence of the river in the linear
region classified as shadow. This requires spatial contextual
reasoning and will also be explorer further.

VI. CONCLUSIONS

This paper presents a new method for supervised clas-
sification of multi-channel SAR images. The approach is
hierarchical and feature-based. Various features were used
that represent radiometric, polarimetric, interferometric and
spatial information. The proposed classification method is
hierarchical: classes which are difficult to distinguish are
grouped. In a first step these groups are separated from
each other. In sub-sequent steps, the groups are further sub-
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TABLE II

CONFUSION MATRIX, UA, PA AND κ- COEFFICIENTS OF FINAL RESULTS

Confusion Classification Classes PA(%)
Matrix C1 C2 C3-5 C6 C7 C8 C9,11 C10 C12

C1 42617 9003 1237 1 300 14355 432 114 181 62.45
C2 2488 1080 1236 201 993 10651 5575 320 31 4.78

Validation C3-5 8141 119 24197 295 136 3815 4271 127 93 58.74
C6 7 72 769 1779 528 67 1810 2 346 33.07

Set C7 26 36 75 105 639 96 131 140 119 46.74
C8 1219 7107 277 0 665 12461 480 68 56 55.80

Classes C9,11 903 60 2103 179 261 277 23616 210 479 84.08
C10 44 8 67 5 152 3 345 3114 591 71.93
C12 36 17 488 60 102 98 1411 354 4270 62.46

UA(%) 76.81 6.17 79.47 67.77 16.92 29.79 62.03 69.99 69.25
κ 0.4807 -0.0433 0.5134 0.3218 0.4572 0.4413 0.8034 0.7130 0.6127

divided. The separation between different groups or classes is
based on logistic and multi-nomial regression. Both methods
combine feature selection with the search for the classification
function and result in detection images for each class. These
are then combined using majority voting to obtain the final
classification result.

The method is applied to a project on humanitarian dem-
ining where extensive ground-truth has been acquired for
both learning and validation. The results are validated using
statistical measurements on the obtained confusion matrix.
Most classes are correctly classified. A noteworthy exception
is the class “fields in use without vegetation” which is highly
confused with the class “pastures”. The input features do
not contain information that allows to distinguish these two
classes. For linear objects it is likely that the results can be
further improved by replacing the majority vote by a MRF in
the classification scheme. This possibility will be investigated
further.
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