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Dirk Borghys,1 Ingebjørg Kåsen,2 Véronique Achard,3 and Christiaan Perneel4

1 Department CISS, Royal Military Academy, 2007 Brussels, Belgium
2 Land and Air Systems Division, Norwegian Defence Research Establishment (FFI), 2007 Kjeller, Norway
3 Theoretical and Applied Optics Department, French Aerospace Laboratory (ONERA), FR-31055 Toulouse Cedex 4, France
4 Department of Mathematics, Royal Military Academy, Brussels, Belgium

Correspondence should be addressed to Dirk Borghys, dirk.borghys@gmail.com

Received 24 May 2012; Revised 22 August 2012; Accepted 9 September 2012

Academic Editor: Xiaofei Hu

Copyright © 2012 Dirk Borghys et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Anomaly detection (AD) in hyperspectral data has received a lot of attention for various applications. The aim of anomaly detection
is to detect pixels in the hyperspectral data cube whose spectra differ significantly from the background spectra. Many anomaly
detectors have been proposed in the literature. They differ in the way the background is characterized and in the method used
for determining the difference between the current pixel and the background. The most well-known anomaly detector is the RX
detector that calculates the Mahalanobis distance between the pixel under test (PUT) and the background. Global RX characterizes
the background of the complete scene by a single multivariate normal probability density function. In many cases, this model is not
appropriate for describing the background. For that reason a variety of other anomaly detection methods have been developed.
This paper examines three classes of anomaly detectors: subspace methods, local methods, and segmentation-based methods.
Representative examples of each class are chosen and applied on a set of hyperspectral data with diverse complexity. The results
are evaluated and compared.

1. Introduction

Many types of anomaly detectors have been proposed in
literature [1, 2]. The most frequently used anomaly detector
is the (spectral only version of the) Reed-Xiaoli (RX) detector
[3] that is often used as a benchmark to which other methods
are compared. The RX detector characterizes the background
by its spectral mean vector μB and covariance matrix ΣB. The
actual detector calculates the Mahalanobis distance between
the pixel under test r and the background as follows:

DRX =
(
r − μB

)T
Σ−1
B

(
r − μB

)
. (1)

The global RX detector characterizes the background
of the complete scene by a single multivariate normal
probability density function (pdf). In many scenes, this
model is not adequate. For that reason, several variations of
the global RX detector have been proposed in literature [1, 2,
4–12]. They can be sub-divided into three classes: subspace
methods, local methods, and segmentation-based methods.

In complex scenes the latter category was shown to be very
effective and several segmentation-based anomaly detectors
(SBAD), not necessarily based on RX, have recently been pro-
posed [13–20]. The aim of the current paper is to compare
the results obtained by different types of anomaly detectors
in scenes characterized by different types of background. In
particular, two rural scenes with subpixel anomalies, a rural
scene with some of the targets in shadow, and an urban
scene were considered. Representative examples of each of
the three previously mentioned classes of anomaly detectors
were included in the comparison. In previous work [21], we
noted the importance of data reduction and preprocessing on
anomaly detection results. The current paper therefore also
presents a comparison of results obtained by the different
detectors after applying different preprocessing methods.

The evaluation of the detection results is mainly based on
receiver-operating characteristic (ROC) curves. For spatially
fully resolved targets, the false alarm rate at first detection was
also considered. For the two scenes with extended targets,
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besides an objective evaluation, a more subjective evaluation
is also presented. The rest of the paper is organized as
follows. Section 2 presents the used datasets; in Section 3 the
examined anomaly detection methods are briefly presented;
Section 4 presents the different preprocessing methods that
have been applied to the data. The last two sections of the
paper present the results and the conclusions. The appendix
presents a brief exploratory data analysis that mainly aims at
verifying to what extent the different used datacubes comply
with the assumption of global or local unimodal multivariate
normality.

2. Overview of the Dataset

The analysis was performed on a set of hypercubes of
scenes with various backgrounds and representative of three
scenarios as follows:

(i) a rural environment with subpixel targets (CAM and
OSLO1),

(ii) a rural environment with some of the targets in
shadow (BJO),

(iii) an urban environment (OSLO2).

Table 1 presents an overview of the used dataset. The
first two datacubes are real hyperspectral images in which a
matrix of anomalies was inserted artificially. Figure 1 shows
RGB composites of these images on which the targets have
been superimposed.

The results shown in this paper were obtained with 10%
mixing ratio subpixel anomalies for the CAM scene. For
OSLO1, the mixing ratio was varied from 100% to 10%. The
inserted anomalies are spectra of a green paint (CAM) and a
green fabric (OSLO1).

The BJO image (Figure 2(a)) was acquired over a natural
scene with an agricultural region and a small forest near
the village of Bjoerkelangen in Norway. The figure shows
the target locations with light blue colored rectangles repre-
senting the target sizes superimposed on the RGB composite
of the scene. Fourteen targets composed of different types
of material and with different colors were laid in the scene
during the image acquisition. Targets T3–T7 were in shadow.
T3 was in deep shadow between the trees, and the four others
were in the shadow at the edge of the forest. Table 2 presents
the dimensions and material types of the different targets.

The OSLO2 scene (Figure 2(b)) is part of the center of
Oslo. In this scene, four targets (T1–T4) were laid out. Their
respective dimensions in the image are T1: 5× 10, T2: 5× 9,
T3: 2×6, and T4: 6×7 pixels. Targets T2 and T3 are pieces of
green fabric and the other two of a blue plastic. T1–T3 were
laid out on the grass in a park, and T4 was put on an asphalt
background in the shadow from a building.

The CAM image was rectified and atmospherically
corrected. The images BJO, OSLO1, and OSLO2 were not
rectified before processing and all processing on these scenes
was applied to radiance data, that is, without applying any
atmospheric correction.

3. Anomaly Detection Methods

Besides global RX, representative examples of three cat-
egories of anomaly detectors are examined in the paper.
Figure 3 presents an overview of the selected detectors in
the three classes. As can be seen from the figure, many of
the investigated methods are RX-based, but for the subspace
detection methods and in particular for the SBAD methods,
some anomaly detectors that are not related to RX have also
been included. The different detectors are briefly described
below.

3.1. Subspace Methods. The subspace methods are global
and have in common that they apply principal component
analysis (PCA) or singular value decomposition (SVD) to
the datacube. The first PCA/SVD bands are supposed to
represent the background and they are eliminated in different
ways by the various subspace methods. Subspace anomaly
detectors are thus global anomaly detectors applied on a
spectral subset (subspace). For all of the subspace methods,
the only parameter is the number of PCA or SVD bands
(nb) that is considered to represent the background. If
this number is set too high, targets will disappear in the
background, if it is too low, too many false alarms will
remain. Automatically determining an optimal value for the
dimension of the background subspace remains a current
research topic.

3.1.1. Subspace RX (SSRX). In SSRX, the global RX is applied
on a limited number of PCA bands. The first PCs are
discarded in SSRX.

3.1.2. RX after Orthogonal Subspace Projection (OSPRX).
In OSPRX, the first PCA/SVD components define the
background subspace and the data are projected onto the
orthogonal subspace before applying the RX detector [2, 22].

In the current paper, the SVD of the global spectral
covariance matrix Σ is used. Because Σ is positive definite,
the SVD is equivalent to the following eigenvector/eigenvalue
decomposition:

Σ = UΛUT , (2)

where U is the matrix of eigenvectors of the decomposition
and Λ the diagonal matrix with decreasing eigenvalues. The
projection operator PSVD is defined as a function of the first
nb eigenvectors (columns of U), corresponding to the highest
eigenvalues, W = U(1 . . . n, 1 . . . nb) as follows:

DOSPRX(r) = rT(I − PSVD)r = rT
(
I −WWT

)
r, (3)

with I the n× n identity matrix. n is the number of channels
in the datacube, and nb the number of channels used to
model the background subspace (1 ≤ nb < n).

3.1.3. RX after “Partialling Out” the Clutter Subspace (PORX).
In this method, the effect of the clutter in a pixel is removed
(partialled out) component-wise by predicting each of its
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Table 1: Overview of the used dataset.

Name Site
Sensor
name

Number of
bands n

Spectral range
(in μm)

Spatial resolution
(in m)

Image size
(in pixels)

Number of
targets

Total target size
(in pixels)

CAM Camargue (Fr) Hymap 126 0.44–2.45 4 150 × 100 45 45

OSLO1 Oslo (No) HySpex 80 0.410–0.984 0.25 286 × 287 81 81

BJO
Bjoerkelangen

(No)
HySpex 80 0.410–0.984 0.25 700 × 1600 14 574

OSLO2 Oslo (No) HySpex 80 0.410–0.984 0.25 700 × 1600 4 45

Table 2: Material types and sizes (in pixels) of the different targets in the BJO image.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Painted boards Painted boards
Green car Red car Cloths Cloths Cloths Cloths People

Paint 1 Paint 2 Paint 3 Paint 1 Paint 2 Paint 3 Paint 4

8× 22 5× 11 4× 3 2× 3 5× 7 4× 4 3× 3 2× 7 3× 4 8× 10 5× 7 4× 7 5× 8 7× 16

(a) (b)

Figure 1: RGB color composite of the CAM (a) and OSLO1 (b) datacubes with targets superimposed, respectively, in cyan and black.
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Figure 2: RGB composite of the BJO (a) and OSLO2 (b) datacubes with target locations indicated.
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Figure 3: Schematic overview of the examined anomaly detection
methods.

spectral components as a linear combination of its high-
variance principal components. The detector applies the RX
detector on the residual. Details of the method can be found
in [10].

3.1.4. Complimentary Subspace Detector (CSD). The CSD
is not an RX-based method. In the CSD, the highest
variance principal components are again used to define the
background subspace and the other PCs, to define the target
subspace (the complimentary subspace) [7]. The PUT is then
projected on the two subspaces and the anomaly detector is
the difference of the projection onto the target subspace and
the background subspace as follows:

DCSD(r) = rTPtr − rTPbr, (4)

where

Pb = U(1 . . . n, 1 . . . nb)UT(1 . . . n, 1 . . . nb),

Pt = U(1 . . . n, (nb + 1) . . . n)UT(1 . . . n, (nb + 1) . . . n).
(5)

3.2. Local Methods. In the local anomaly detection methods,
the statistics of the background are estimated locally in a
window around the PUT. A double sliding window is used:
a guard window and an outer window are defined, and
the background statistics are determined using the pixels
between the two (see Figure 4). Sometimes a triple window
is used where the covariance matrix of the background
is estimated in a larger window than the average local
background spectrum.

3.2.1. Local RX (LRX). In LRX, the covariance matrix ΣB

and mean spectrum μB of the background are estimated
locally in a triple window around the PUT. In the used
implementation, the size of the guard window is a parameter
from which the size of the two other windows is determined
as a function of the number of bands in the image as follow:

Wμ = min
k odd

(
k2 −W2

G ≥
√

10n
)

,

WΣ = min
k odd

(
k2 −W2

G ≥ 10n
)
.

(6)

3.2.2. Quasi-local RX (QLRX). Quasi-local RX (QLRX) [9]
offers a compromise between the global and local RX

PUT

Guard window

Window for µ
WGWµ

Window forΣ

WΣ

Figure 4: Sliding triple window used in the local AD methods.

approach. In QLRX, the global covariance matrix Σ is
decomposed using eigenvector/eigenvalue decomposition
(2). The eigenvectors are kept in the RX, but the eigenvalues
are replaced by the maximum of the local variance and the
global eigenvalue as

λiQL =
[

max
(
λiloc, λiglob

)]
, (7)

where i is an index denoting the pixel in the image. This
means that the score of the detector will be lower at locations
of the image with high variance (e.g., edges) than in more
homogeneous areas. Spectral statistical standardization (see
Section 4.4) is applied as a preprocessing step. The local
variance is determined in a double sliding window.

3.3. Segmentation-Based Methods. In complex scenes, the
hypothesis of a single multivariate normal distribution
of background spectra is usually not verified, not even
locally. For that reason several segmentation-based anomaly
detectors have been proposed in literature. In this paper, four
of these methods have been included in the analysis.

3.3.1. Class-Conditional RX (CRX). In CRX, the image is first
segmented, the covariance matrix and mean within each class
i (i.e., Σi and μi) are determined. The Mahalanobis distance
between the PUT and each of the classes is calculated. The
final result is the minimum of these distances:

DCRX = min
i

[(
r − μi

)T
Σ−1
i

(
r − μi

)]
. (8)

In the current paper, K-means clustering is used and the
parameters of the method are the minimum number of pixels
allowed in each class and the maximum number of classes
used in the clustering. The number of classes follows from
these parameters.

3.3.2. Method Based on Multivariate Normal Mixture Mod-
els (MMM) [13]. A Stochastic Expectation Maximization
(SEM) algorithm [23] is used for fitting a multivariate
normal mixture model to the image for describing the
background. The anomaly detector detects pixels that have
a low probability according to the fitted model.

The parameters of the method are the maximum number
of mixture components and the termination threshold for
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the iterative parameters estimation method. The idea behind
the mixture model is to use the mixture components (the
multivariate normal pdfs) as base pdfs in a row expansion
of the true pdf, which can then, in principle, have any shape.

3.3.3. Two-Level Endmember Selection Method (TLES). The
principle of the TLES method [19] is as follows: a small
scanning window (50 × 50 pixels) runs over the image and
at each position of the window the principal background
spectra are determined using a segmentation method based
on endmember selection. Endmembers that correspond to
at least a given percentage (MP) of the image tile are stored.
At the end of the process, an endmember selection is again
applied on the stored endmembers and linear unmixing
is applied on the image. Anomalies correspond to pixels
with a large residue after unmixing. In [19], N-FINDR was
used as the endmember selection method. In the current
paper, the minimum volume simplex analysis algorithm
(MVSA) [24] was used because it was found to give better
results. Parameters of the method are the threshold MP and
the number of endmembers kept in the two stages of the
algorithm.

3.3.4. Method Based on Self-Organizing Maps (SOM). A
trained SOM is considered as a representation of the
background classes in the scene. Anomalies are determined
by computing the spectral distances of the pixels from the
SOM units [16, 17]. The SOM was applied on the first PCA
components and run using a square map consisting of NsxNs
hexagonal cells. The SOM was optimized sequentially. The
parameters of the method are Ns and the number of PCA
bands used.

4. Preprocessing Methods

Before applying the actual anomaly detectors, some prepro-
cessing methods were applied to the data. Three different
types of preprocessing were applied.

The first type is data dimension reduction, which has two
objectives. The first objective is to describe the background
better and to obtain more reliable statistical estimation,
especially when applying local methods where the number
of samples to compute statistics from is low. Moreover,
reducing data dimension allows to reduce the size of the
windows for the local methods. This reinforces the local
aspect of the method and reduces the risk that nearby targets
overlap with the window used to compute background
statistics. The second objective is to project the data on
axes where the anomalies are enhanced, that is, the most
separated from the background pixels. In this paper, we focus
on two different methods, spectral binning which fulfills the
first objective, and kurtosis-based dimension reduction, that
attempts to fulfill both.

The second type of preprocessing aims to account for
the effects of shadow. In this paper, a simplified approach
consisting in square root transforming the data is used
(Section 4.5).

Finally, some AD methods need some specific prepro-
cessing that is described in Sections 4.3 and 4.4.

4.1. Dimension Reduction by Spectral Binning (SB). As noted
in [25, 26], dimension reduction can improve hyperspec-
tral anomaly detection performance substantially. We have
applied a dimension reduction method based on spectral
binning, similar to the method applied in [26]. The binning
consists in averaging over groups of neighboring bands,
down to a spectral resolution of about 30 nm. The binning
tends to improve the signal-to-noise ratio by reducing the
relative contribution of photon noise. When this can be done
while preserving the relevant spectral features, the result is
improved detection performance.

4.2. Kurtosis-Based Dimension Reduction (KDR). As anomaly
detection aims to search for outliers, a projection that
enhances outliers applied as a preprocessing can improve
detection performance. It has been shown that kurtosis is
very sensitive to outliers. In [27] data are projected on the
(first) eigenvectors of the kurtosis matrix K :

K = Σ−1 1
N

N∑

i=1

(
Xi − μ

)t
Σ−1(Xi − μ

)(
Xi − μ

)(
Xi − μ

)t, (9)

where Xi is the ith element of X , the matrix of observations
(the spectrum of the ith pixel), and μ and Σ are the spectral
mean and covariance matrix of the datacube. N is the total
number of pixels in the image. This method is mainly useful
if the data are unimodally distributed, that is, in scenes
characterized by a relatively homogeneous background (in
this work, the CAM and OSLO1 images). Usually, only
the first 3 to 5 kurtosis components are kept for further
processing. This is the case for GRX, LRX and QLRX, MMM,
and SOM. For the subspace methods and TLES, all kurtosis
components were used.

4.3. Spectral Whitening. If the eigenvalues and eigenvectors
of the covariance matrix of the complete image are, respec-
tively, Λ and U , and μ is the average spectral vector of the
image, then the spectral whitening of the pixel r is given by
[6, 7]

rW = UΛ−1UT
(
r − μ

)
. (10)

After spectral whitening, a Gaussian distributed variable
becomes spherically symmetric and this is sometimes ben-
eficial for detection [6]. Whether whitening is beneficial for
the anomaly detector depends on the AD method and the
datacube. For CSD, spectral whitening is always applied.
The other subspace methods were applied with and without
whitening and the best result obtained is reported in this
paper.

4.4. Spectral Statistical Standardization. The spectral statisti-
cal standardization converts each spectral band to have a zero
mean and a standard deviation of one. This is necessary for
the QLRX in order to make sure that the global eigenvalues
and the local variances can be interchanged in the algorithm.
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4.5. Square Root Transform. Detection performance is gen-
erally degraded in shadow, due, among other things, to
low signal-to-noise ratio and distortions of the spectral
signatures caused by secondary illumination, the adjacency
effect, and path-scattered skylight. In addition, the large
dynamic range of the data from scenes containing both
sunlit and shadowed areas makes the data modeling task
more difficult. In order to improve detection performance
in shadow, different strategies can be applied: de-shadowing
and illumination suppression for estimation of sunlit-like
radiance in shadowed areas [28–31], sun/shadow segmenta-
tion and application of adapted modeling in the respective
areas [32], or transformation of the data to account for the
effects of shadow. We have square root transformed the data
rsqrt = √

r. This reduces the dynamic range of the data,
and, perhaps more importantly, makes the noise signal level
independent [33], with benefits for data modeling through a
suppression of the influence of noisy low-level signals. At low
signal levels for homogeneous backgrounds, the dominating
source of variation in the signal is Poisson distributed
counting (photon) noise, and square root transforming
the data yields approximate normality [34]. Square root
transforming the data of course also affects the distribution
in the, vast majority of, cases where scene clutter is the main
source of signal variation, but in unpredictable ways for
complex backgrounds.

5. Evaluation Method

Experimental ROC (receiver operating characteristic) curves,
showing the detection rate (DR) versus the false alarm rate
(FAR), are used to evaluate the results obtained with the
various detectors. For the images with resolved targets, a
pixel-based ROC curve is calculated for each target, whereas
for the images with subpixel targets, an ROC curve is
calculated based on all the targets in the image. DR is plotted
versus the logarithm of the FAR (the resulting curve is
referred to as a logROC), and the area under the logROC
curve (the logAUC) is calculated and used as the measure of
performance. The reason for using a logarithmic FAR scale is
that it ensures equal weight across the range of FAR values.

For extended targets (in BJO and OSLO2), ROC curves
give the detection performance for each pixel of the target
with respect to the false alarm rate. For defense and security
applications, it is also of interest to assess the performance
at the first detection of a target. In this paper, for extended
targets, we therefore also determined the false alarm rate at
the first detection for each of the targets.

Besides these objective evaluation metrics, it is also
interesting to look at the type of false alarms that the various
detectors produce in the different scenes. Therefore for the
“best” detectors, a detection image is shown corresponding
to the threshold for which at least one pixel of the most
difficult target is detected. This subjective result is shown for
scenes with extended targets (BJO and OSLO2).

6. Results and Discussion

6.1. Implementation Issue: Parameter Selection. The different
examined AD methods depend on different parameters.

For some of the applied methods, the parameters were set
according to experience, whereas for others, where we lack
this experience and where no consensus exists in literature
for setting the parameters, we chose the optimal parameter
setting through an optimization process in order to make the
comparison between the detectors fair.

For the local methods, the parameters are the dimensions
of the guard window and the outer window(s). The guard
window should be set to be larger than the largest target
of interest expected to be present in the scene, and size
of the outer window(s) is derived from it as explained in
Section 3.2.1. For the two datasets with subpixel anomalies,
the guard window was set to 1, and for the two other datasets,
it was set to 15.

GRX has no parameters.
For subspace methods, the only parameter is the dimen-

sionality attributed to the background subspace. Several
methods have been proposed for estimating this “signal
subspace,” mainly for unmixing purposes [35–39]. The two
latter focus on finding the signal subspace dimension in
the presence of “rare signals.” They are thus likely to add
the signal components containing the target to the signal
subspace and are therefore less relevant to the choice of
the signal subspace in subspace anomaly detection. The
remaining methods [35–37] give different results and none of
the signal subspace dimensions estimated by these methods
correlate in a consistent way with the optimal number of
bands in the subspace detectors for the different scenes.
A consistent way for identifying the proper dimensionality
to use in modeling the background clutter for subspace
anomaly detection has yet to be found, as mentioned in
the conclusion of [10]. Because the aim of the paper
is to compare the different algorithms in the different
scenes, the dimensionality parameter is optimized for each
detector/scene combination. The complete range of possible
background dimensionality (1 to n−1) was explored and the
results shown are the best results obtained by that algorithm.

Each of the SBAD methods has its own set of parameters.
For CRX, two parameters are set: a maximum number of
classes and a minimum number of pixels per class. This last
parameter can be used to reduce the risk that anomalies form
their own classes. Then the maximum number of classes
can be set higher than the actual number of background
classes. The minimum number of pixels in each of the classes
is set to a low percentage (for instance 0.5%) of the total
number of pixels. For MMM, the parameters are similar to
those of CRX. For SOM and TLES, the parameters, described
in Section 3.3, were varied in a reasonable range and the
results shown are the best obtained for the examined range
of parameters.

6.2. Results for Subpixel Detection in a Rural Environment

6.2.1. Results for CAM. Table 3 shows the logAUC results for
the different detectors obtained in the CAM dataset with
a 10% mixing ratio. Results are shown without prior data
reduction and with two types of data reduction: spectral
binning and kurtosis-based data reduction. We see from the
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Table 3: LogAUC results for CAM scene with a mixing ratio of 10%
for different types of data reduction.

AD method

Data reduction method

No data
reduction

Spectral
binning

Kurtosis data
reduction

GRX 0.595 0.637 0.732

SSRX 0.742 0.778 1.000

OSPRX 0.931 0.754 0.893

PORX 0.568 0.205 0.957

CSD 0.868 0.826 0.763

LRX 0.616 0.950 1.000

QLRX 0.720 0.828 1.000

CRX 0.683 0.830 1.000

TLES 0.128 0.268 0.698

SOM 0.116 0.529 0.120

MMM 1.000 1.000

Table 4: LogAUC results for OSLO1 scene with a mixing ratio of
33% for different types of data reduction.

AD No data reduction
Spectral
binning

Kurtosis data
reduction

GRX 0.163 0.357 0.390

SSRX 0.292 0.486 0.394

OSPRX 0.383 0.486 0.391

PORX 0.322 0.493 0.391

CSD 0.246 0.391 0.396

LRX 0.821 0.983 0.995

QLRX 0.294 0.395 0.473

CRX 0.163 0.357 0.449

TLES 0.108 0.466 0.356

SOM 0.232 0.385 0.463

MMM 0.128 0.544 0.597

table that all SBAD methods, local methods, and GRX benefit
from dimension reduction, more from kurtosis dimension
reduction (KDR) than from spectral binning (SB) (with
exception for SOM, which performs much better after SB
than after KDR). For the subspace methods, the results are
more diverse: OSPRX and CSD perform best on data with
no dimension reduction, whereas for SSRX and PORX a large
improvement in performance is observed after KDR.

Figure 5 shows a scatter plot of the CAM data with 10%
mixing ratio subpixel targets in the 2D space defined by the
first two kurtosis components. The figure shows that the
targets are very well separated from the background after
KDR transform in this scene. This clear separation is not
observed on any of the PCA components or on spectral
bands before or after spectral binning.

The best results for this scene are indeed obtained with
SSRX, LRX, QLRX, CRX, and MMM after KDR. These
detectors all achieve a logAUC of 1.0, which means that all
targets have been detected with a false alarm rate that is
smaller than 1/image size, that is, FAR < 6.6∗10−5. Since the
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Figure 5: Projection of background (green) and target (red) pixels
on the first two kurtosis component axes for CAM10.

results are saturated, we cannot properly distinguish between
the methods.

6.2.2. Results for OSLO1. Table 4 shows the logAUC results
for the different detectors obtained in the OSLO1 dataset
with a 33% mixing ratio. Results are shown without prior
data reduction and with spectral binning and kurtosis-based
data reduction.

LRX clearly outperforms all other detectors. The assump-
tion of local normality is very well met in this image (cf.
Table 6 in the Appendix). LRX is also, in contrast to all other
methods, able to model the background without influence
of targets. For subpixel targets this is particularly true, since
the guard window will always contain the whole target.
As regards data reduction, for SBAD and local methods
and GRX, the results are the same here as for CAM10:
the methods all benefit from dimension reduction, and
more from KDR than from SB (with exception for TLES
which benefits more from SB than from KDR). In this
dataset, we also observe an improvement in performance
with dimension reduction for the subspace methods, but for
these methods SB is generally more beneficial than KDR.

For OSLO1, the behavior of each detector as a function
of the mixing ratio was also investigated. Figure 6 shows the
logAUC results of the different detectors versus the mixing
ratio for the OSLO1 datacube. In the experiment, the mixing
ratio was varied from 100% (full pixel anomaly) to 10%. For
creating the figure, the data reduction method that gives the
best results was selected for each of the detectors. Results
of global RX-based methods and CSD are shown as solid
lines, LRX and QLRX results as dashed lines, and results
of segmentation-based methods as dot-dashed lines. LRX
clearly gives the overall best results, followed by SSRX for
larger target portions and MMM for smaller. The result of
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Figure 6: LogAUC versus mixing ratio for the different detectors in
OSLO1.

SSRX for the 50% mixing ratio is very deviant, suggesting
perhaps that subspace fit is somewhat random.

Contrary to the CAM scene, in OSLO1 the performance
of the detectors at 10% mixing ratio is very low. The
targets are more difficult to detect in the OSLO1 scene
than in the CAM scene although the OSLO1 scene has a
more homogeneous background and conforms well to the
multivariate Gaussian assumption (see discussion of Table 5
in the Appendix). The OSLO1 scene is more difficult than the
CAM scene because both the spectral angle and the Euclidean
distance between the targets and the different background
spectra are much smaller in the former. Figure 7 illustrates
this point by means of the normalized histogram of the
spectral angle of all background pixels with respect to the
average target spectrum for both scenes at a mixing ratio
of 10%. The figure shows that the spectral angle is indeed
larger in the CAM scene than in the OSLO1 scene. The spread
of the spectral angle in the CAM scene also illustrates the
heterogeneity of the background.

6.3. Results for a Rural Environment with Some of the
Targets in Shadow (BJO). Figures 8 to 10 show a graphical
representation of the logAUC (a) and the logarithm of the
false alarm rate at first detection (logFARAt1stDet) (b) for
each of the detectors and for each target for the BJO scene.
The colors represent the value of the respective performance
metric. The color map is such that red corresponds to
the best performance. The three different figures represent
results after different types of preprocessing: Figure 8 shows
results obtained without any preprocessing, Figure 9 results
after spectral binning, and Figure 10 results after spectral
binning and square root transform.

From the figures it is immediately clear that the targets in
shadow (T3–T7) are more difficult to detect than the others.
T3, hidden in the forest is the most difficult to detect. T2 (a
red car) is the most easily detectable target.
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Figure 7: Normalized histograms of the spectral angle of the
background pixels with respect to the average target spectrum in
the CAM and OSLO1 scenes, at 10% mixing ratio.

We observe a slight improvement of performance from
spectral binning for all detectors except TLES and SOM,
which have their detection performance for targets in the sun
substantially degraded by spectral binning. The reason why
we—as opposed to what we saw in the previous datasets—
only observe a slight improvement in performance from
spectral binning, could be that the targets in sun are so easy
to detect that we detect them anyhow, whereas the targets
in shadow need some form of compensation for shadow
in order to be detectable. The levels of the performance
values indicate that this could be the case. For LRX, the size
of the windows used to calculate the background statistics
depends on the number of bands, and the results hence are
not comparable across different numbers of bands.

Square root transforming the data generally improves the
detection performance for targets in shadow substantially. It
also improves the performance for targets in the sun for some
detectors, but for others, mainly the subspace detectors and
GRX, it reduces the performance for some sunlit targets—
notably targets that are intensity anomalies (T8, T10, and
T11), and that hence have their degree of anomality reduced
when the data are square root transformed. The best results
on this dataset are obtained with MMM, LRX, and CRX.
MMM gives the overall best results, whereas LRX gives the
best results for the targets in shadow: for targets T5 and T6,
LRX gives significantly better results than MMM. LRX gives
also slightly better results than MMM for T10 and T11, which
are painted with the same paints as, respectively, T5 and T6.
The logAUC and logFARAt1stDet results are globally inter-
consistent, but they do show supplementary information.
The results are consistent with the complexity of the scene
and with the compliance with the multinormal distribution
assumption locally shown in Table 6 of the Appendix.

In order to give an idea of the type of false alarms
produced by the three best detectors, in Figure 11 the results
of the three best detectors (MMM, LRX, and CRX after
spectral binning and sqrt transform) are superimposed on
a grayscale image of the BJO scene. The shown results are
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Figure 8: logAUC and logFARAt1stDet results per target without any data reduction for BJO.
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Figure 9: logAUC and logFARAt1stDet results per target after spectral binning for BJO.

thresholded detection results with the threshold set to the
lowest first detection level for the true targets (i.e., the
threshold for which at least one pixel of the most difficult
target is detected). The figure shows that the false alarms
produced by MMM mainly consist of isolated pixels in the
forest and also some more extended false alarms at the
top right of the image. LRX produces some small false
alarms in the forest while CRX detects part of the stream
as well as some detections in the forest. Most of the false
alarms are detected by only one detector. On the other
hand, for each target, except T7, an overlap in the detected
zone for the three detectors is seen. The detectors are thus
complimentary and fusing their results may be of interest.
Likely causes of the complementarity of the results are that
LRX are able to account more correctly for local illumination,
whereas MMM/CRX are able to model locally heterogeneous
background (forest) more precisely. The results for CRX
indicate that too few classes are used: a large background
structure like the stream is poorly modelled.

6.4. Results for the Urban Scene (OSLO2). Figure 12(a) shows
the logAUC results for the OSLO2 scene. Figure 12(b) shows
the logFARAt1stDet results. For creating the figure, the data
reduction method that gives the best results was selected
for each of the detectors. The best data reduction method
was spectral binning for most detectors, but for OSPRX and

QLRX the best results were obtained without data reduction,
and for LRX, KDR gave the best results. The superiority
of spectral binning over KDR for most detectors is to be
expected because of the complexity of the scene (cf. Table 5 in
the Appendix), and similarly the good performance of KDR
for LRX—it can be attributed to local normality, see Table 6
in the Appendix. The mixed results for subspace detectors are
consistent with the results for CAM and OSLO1. The result
for QLRX, on the other hand, is not, but we should probably
not read too much into this, since the detector more or less
fails to detect the targets.

It can be seen that the values of logAUC are much
lower than for the other datacubes. The maximum value
obtained here is around 0.5. This is due to the complexity
of the scene: the targets inserted into the scene are not the
only anomalies. In an urban environment many objects can
present an anomalous spectrum, for example, cars, special
roof materials, and so forth. The comparison therefore only
shows how well the different anomaly detection methods
cope with urban “clutter.”

From the two figures it can be seen that MMM gives the
overall best results, followed by TLES and CRX. Of the two
latter CRX gives the best results according to the logAUC
metric and TLES according to the logFARAt1stDet metric.
As could be expected the SBAD methods thus obtain the best
results in the urban scene.
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Figure 10: logAUC and logFARAt1stDet results per target after SQRT transform and spectral binning for BJO.

MMM

CRX                LRXL

Figure 11: Color composite of the detection results for MMM,
LRX, and CRX at lowest 1st detection threshold, superimposed
on B/W image of BJO (R: MMM results, G: LRX results, B: CRX
results).

GRX and all subspace methods perform quite bad,
except for OSPRX that gives quite good results for targets
T1, T2, and T4. Contrary to what we have seen in the
other datasets, LRX does not perform particularly well in
this dataset—despite good compliance with the multivariate
normal distribution assumption locally near the targets, cf.
Table 6 in the Appendix. The reason for this is probably that
the remaining (non-target) parts of the scene are not well
described by a local multivariate normal distribution, and
hence we get lots of false alarms. This assumption is partly
verified by comparing with the results of OSLO1. The target
material of targets T2 and T3 in OSLO2 is the same as the
material of the OSLO1 targets, and the local background
is very similar (grass at two different places in Oslo), so a
difference in performance between the images ought to be
due to a difference in the number of false alarms.

As mentioned above, an urban scene presents many
objects that may have an anomalous spectrum and that thus
will be considered a false alarm in the above evaluation. It
is therefore of interest to give an idea of these false alarms
for each of the detectors. Figure 13 presents the results of the
three best detectors (MMM, CRX, and TLES), superimposed
on a grayscale image of the OSLO2 scene. The results shown

are thresholded detection results with the threshold set to the
lowest first detection level for the true targets.

The figure shows that target 1 is the most easy, and that
it was detected completely by the three detectors. T2 and T3
have been completely detected by MMM, while the two other
detectors (at the selected thresholds) detect only a part of the
interior. On the contrary, T4 has been completely detected
by TLES and CRX, while MMM only detects a part of its
interior. The figure also shows that many of the “false alarms”
are quite different for the three detectors. TLES detects
parts of the vegetation. CRX detects a set of small objects
next to the building on the lower left in the image. Some
cars and small structures on roofs have been detected by a
combination of detectors. This subjective evaluation shows
that the three detectors that perform best according to the
“objective” evaluation are quite complimentary. Examining
further the properties of their results may lead to interesting
ideas on fusion of anomaly detectors.

7. Conclusions

This paper evaluates the performance of anomaly detection
methods in scenes with different backgrounds and types
of targets: agricultural scenes with subpixel targets, an
agricultural scene with some of the targets in shadow,
and an urban scene. Three classes of anomaly detectors
were considered besides the global RX: subspace methods,
local methods, and segmentation-based anomaly detection
(SBAD) methods.

For subpixel anomaly detection in scenes of low com-
plexity (rural and non shadow), LRX gives the best results,
followed by MMM. From the investigated global RX-based
methods SSRX and OSPRX give the best results. For the
SBAD and local methods and GRX, detection results are
improved by data reduction, and (with minor exceptions)
more by kurtosis dimension reduction than by spectral
binning. The improvement of results after kurtosis-based
data reduction for most of the detectors illustrates the
potential of customizing the data reduction method.

For the rural scene with some of the targets in shadow
the results show that it is important to account for the effects
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Figure 12: logAUC and logFARAt1stDet results per target for OSLO2 using the best data reduction method for each detector.

MMM

TLESCRX

Figure 13: Left: color composite of the detection results for MMM, CRX, and TLES at lowest 1st detection threshold, superimposed on B/W
image of OSLO2 (R: MMM results, G: CRX results, B: TLES results).

of shadow. In this paper this was done using a simplified
approach consisting in square root transforming the data.
After this transform MMM gives the best overall results,
followed by LRX and CRX. For some targets LRX gives
significantly better results than MMM. These three best
detectors produce different false alarms while producing a
common detection for all but one of the targets. They are
thus complementary to each other and fusion of their results
should be beneficial.

In the urban environment the SBAD methods perform
best. The overall best result for the urban scene is obtained
by MMM, TLES, and CRX. Of the globl RX-based methods
OSPRX gives the best results in this dataset. Subjective
evaluation of the detection results shows that the best
performing detectors give complimentary results, and that
“false alarms” are mainly due to objects with anomalous
spectra in the scene such as cars and parts of buildings.

Further investigation of this complementarity may lead to
efficient detector fusion.

Appendix

Exploratory Data Analysis

The main aim of the exploratory data analysis is to investigate
how well the different datacubes comply with the assumption
of unimodal multivariate normality. If a distribution is
multivariate normal, the square of the Mahalanobis distances
of its samples follows a χ2 distribution with degrees of
freedom equal to the dimension of the multivariate variable
[40]. The compliance can then be investigated visually using
a Q-Q plot of the empirical cumulative distribution function
(CDF) of the Mahalanobis distance and the CDF of the
theoretical χ2 distribution. Figure 14 shows the Q-Q plots
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Figure 14: Q-Q plots for the different data cubes used in this paper.

for the four scenes and the different used preprocessing
methods. Table 5 shows the correlation coefficient between
the empirical and theoretical CDF of the Mahalanobis
distance as well as the maximal deviation between the two
(the Kolmogorov-Smirnov test statistic).

As can be expected the OSLO1 scene, consisting of a very
homogeneous background, conforms best to the assumption
of global multivariate normality. Both the original data

and the data after kurtosis data reduction have a high
correlation coefficient between the two CDFs and a low
value for the KS-statistic. None of the other datasets comply
with the global normality assumption. For the CAM scene
the multivariate normality improves by preprocessing and
the best normality is achieved after kurtosis data reduction
when all kurtosis components are considered. When only the
first five components are considered, the global normality
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(a) (b)

Figure 15: Guard window (red) and outer window used for calculating local Σ centered at each target location for BJO (a) and OSLO2 (b).

Table 5: Correlation coefficient and Kolmogorov-Smirnov test
statistic between empirical and theoretical CDF of the Mahalanobis
distance and the condition number of global Σ.

Name Preprocessing Correlation KS statistic Condition
number of Σ

CAM

None 0.937 0.579 1.11e + 10

SB 0.984 0.295 7.23e + 08

KDR 0.993 0.178 2.91e + 08

KDR (5 kcp) 0.892 0.540 2.95e + 00

OSLO1

None 0.999 0.049 9.11e + 03

SB 0.997 0.093 8.32e + 03

KDR 0.999 0.049 6.73e + 00

KDR (5 kcp) 0.973 0.251 4.91e + 00

BJO
None 0.986 0.278 1.63e + 05

SB 0.973 0.343 1.03e + 05

SQRT + SB 0.992 0.188 1.06e + 05

OSLO2
None 0.979 0.336 3.38e + 04

SB 0.961 0.409 2.27e + 04

assumption is not met. For BJO the combination of the
square root transform and spectral binning improves the
normality of the data.

Several of the investigated anomaly detection methods
(the global RX-based methods and LRX) rely on the
estimation and inversion of the spectral covariance matrix Σ.
It is known that the sample covariance matrix in many cases
needs to be regularized before inversion [41, 42]. The reg-
ularization makes the problem of finding the inverse mathe-
matically stable, but if the initial matrix does not have a stable
inverse, that is, is well-conditioned, the obtained inverse
might not lead to a good detection result for the detector. In
Table 5 the condition numbers of the covariance matrices of
the complete images are also given. The condition number
is the ratio between the highest and lowest singular value
and it provides an indication of the accuracy of the results
of matrix inversion. In CAM and OSLO1 the various prepro-
cessing methods appear to decrease the condition number.
This decrease is particularly significant for KDR in the

OSLO1 scene. For KDR, contrary to the normality assump-
tion, considering only the first five components reduces
the condition number substantially.

The local anomaly detection methods estimate the
characteristics of the background in a local window around
the current pixel. For LRX the data in that local window are
supposed to follow a multivariate normal distribution. In
order to assess the validity of this assumption, the normality
was checked in the neighborhood of each target in the
different scenes. The neighborhood is defined in the same
way as for the actual LRX detector. Table 6 shows the same
estimators of normality as well as the condition number as
in Table 5 but based on a local background estimation. As
there are different targets in each of the scenes, the average
and standard deviation over all targets is given. One can
notice that for the BJO and OSLO2 scene the local normality
assumption is much better met than the global one. For
OSLO1 and BJO the condition number of local Σ is also
better than that of the global Σ. The large standard deviation
of the condition numbers are due to some targets for which
local covariance matrix has a very high condition number.
For CAM, this is the case for three targets and the median
of the local condition number in that scene is 5.3 × 109

(no preprocessing). For the scenes with a limited number
of targets this is explored in more detail in Table 7. The
table shows the values obtained for the three estimators
in the local window around each of the targets. Figure 15
shows the guard window (red) and the outer window (green)
used for estimating local Σ superimposed on a grayscale
representation of the two scenes. The green window is the
outer window used when no data reduction is applied. For
BJO and OSLO2, where the guard window is 15× 15 and the
number of bands n = 80, this means that the outer window
has a size of 33 × 33. In OSLO2, LRX is applied after KDR
and only 5 kurtosis components are kept. This results in an
outer window of 17× 17 represented by the white squares in
Figure 15(b).

From Table 7 it appears that the normality assumption in
the BJO scene is best obeyed for the local neighborhood of
targets T8–T13. T3 has the most heterogeneous background,
as can be also be seen in Figure 15(a). T1 and T2 deviate from
the normality assumption because of target contamination:
the outer windows overlap part of the adjacent target. It is
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Table 6: Correlation coefficient and Kolmogorov-Smirnov test statistic between empirical and theoretical CDF of the Mahalanobis distance
around each of the targets and the condition number of local Σ.

Name Preprocessing Correlation mean ± std KS statistic mean ± std Condition number of local Σ mean ± std

CAM

None 0.95± 0.03 0.48± 0.17 1.15e + 10± 2.3e + 10

SB 0.98± 0.01 0.28± 0.11 3.97e + 09± 8.4e + 09

KDR 0.992± 0.004 0.15± 0.04 8.25e + 08± 2.6e + 08

KDR (5 kcp) 0.991± 0.011 0.128± 0.07 6.08e + 01± 1.04e + 02

OSLO1

None 0.999± 0.0003 0.04± 0.009 6.33e + 03± 5.6e + 03

SB 0.998± 0.0008 0.068± 0.01 3.02e + 03± 2.5e + 03

KDR 0.9995± 0.0003 0.04± 0.009 3.90e + 01± 3.3e + 01

KDR (5 kcp) 0.993± 0.003 0.11± 0.03 1.20e + 01± 2.0e + 01

BJO
None 0.994± 0.02 0.076± 0.10 7.34e + 04± 1.4e + 05

SB 0.996± 0.006 0.089± 0.06 5.38e + 04± 8.6e + 04

SQRT + SB 0.996± 0.006 0.089± 0.06 5.38e + 04± 8.6e + 04

OSLO2
None 0.996± 0.006 0.097± 0.06 3.27e + 04± 1.0e + 04

SB 0.996± 0.005 0.102± 0.05 2.08e + 04± 1.8e + 04

Table 7: Correlation coefficient and Kolmogorov-Smirnov test
statistic between empirical and theoretical CDF of the Mahalanobis
distance calculated in a local window around each target and the
condition number of local Σ for BJO and OSLO2, both without pre-
processing.

TGT Correlation KS statistic
Condition number

of local Σ

BJO

T1 0.9976 0.121 1.746e + 05

T2 0.9968 0.104 1.884e + 05

T3 0.9329 0.420 5.405e + 05

T4 0.9991 0.055 6.775e + 03

T5 0.9995 0.043 6.864e + 03

T6 0.9994 0.052 8.845e + 03

T7 0.9992 0.057 6.654e + 03

T8 0.9999 0.027 1.345e + 04

T9 0.9999 0.022 1.264e + 04

T10 0.9998 0.033 1.144e + 04

T11 0.9997 0.031 1.134e + 04

T12 0.9997 0.032 1.426e + 04

T13 0.9999 0.021 1.123e + 04

OSLO2

T1 0.9995 0.052 3.780e + 04

T2 0.9986 0.096 4.352e + 04

T3 0.9991 0.052 3.021e + 04

T4 0.9874 0.190 1.935e + 04

well known that target contamination degrades the results of
detectors [42, 43]. For the targets in the shadow at the edge
of the forest (T4–T7) the normality assumption is reasonably
well met and the condition number of the local covariance
matrix is lower than for the other targets. The outer windows
for these targets fall entirely in the shadow zone.

Table 7 shows that in OSLO2 the assumption of local
normality is best met for targets T1 and T3 while for T4
the assumption is less valid. The corresponding figure shows

that T4 has indeed the most heterogeneous local background.
There is some target contamination between T2 and T3 when
no data reduction is applied, while this is not the case when
KDR is applied and only five kurtosis components are used.
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