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ABSTRACT 

The objective of the research presented in this paper is to investigate whether Polarimetric SAR 
(PolSAR) data can improve the classification results that are obtained from hyperspectral data in 
the case of highly complex scenes such as urban or industrial sites. Indeed SAR and hyperspec-
tral sensors are sensitive to different characteristics of the imaged objects in the scene, i.e.  hy-
perspectral provides information about surface material while  SAR provides information about 
geometrical and dielectric properties of the objects. Combining both should thus allow to resolve 
classification ambiguities that exist when they are used separately. 

In this paper supervised feature-based classification methods are used on the hyperspectral and 
SAR data separately and the results of these classifications are fused. The features used for the 
classification consist of the original bands for both sensors, the PCA bands for the hyperspectral 
data, the speckle reduced SAR data and results of various polarimetric decomposition methods 
from the POLSAR data. Two classification methods were used, a classical one and a newly devel-
oped one. The newly developed method is based on logistic regression (LR). LR is a supervised 
multi-variate statistical tool that finds an optimal combination of the input channels for distinguish-
ing one class from all the others. The classical classification method is the matched filtering (MF). 
Both classification methods provide, besides a classification image, also probability images that 
give in each pixel the probability or abundance of a given class in that pixel. These can be used in 
the decision-level fusion. Three types of decision-level fusion are investigated: a weighted majority 
vote, a method based on Support Vector Machines (SVM) and one based on a binary decision 
tree.  

The methods are applied on data of two urban areas in South of Germany that were acquired in 
Mai 2004.  The collected data consists of HyMap (VIS-SWIR) and E-SAR data (L-band full-
polarimetric and X-band HH- and VV-polarisation). The detected images included various man-
made objects as residences, industrial buildings, forest, agriculture fields, airport and roads in ru-
ral-urban and industrial scenes. For calibration and verification ground truth data were collected 
using ASD spectrometer and digital topographic and cadastral maps of the areas were acquired.  

An exhaustive comparison of the obtained classification and fusion results is performed. This 
comparison shows that fusion of PolSAR and hyperspectral data improves significantly urban ob-
ject recognition. 

 

INTRODUCTION 

In urban and industrial areas, many man-made materials appear spectrally similar to moderate 
resolution optical sensors like Landsat TM. High spatial resolution sensor like IKONOS are also 
not sufficient to distinguish man-made objects constructed from different materials (i, ii, iii, iv). 
Some of man-made objects can be discriminated in a radar image based on their dielectric proper-
ties and surface roughness. For instance, building walls oriented orthogonal to the radar look di-
rection form corner reflectors and have relatively strong signal returns. A smooth surface of bare 
soil, which acts as specular reflector, will result in relatively low signal returns. However, trees can 
introduce interpretation uncertainty by producing bright returns similar to buildings. Wet soil and 
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other urban man-made features with high dielectric constants (e.g. vegetation, metal roofs) are 
confused in a radar image (v).  Thus, there is no single sensor able to provide sufficient informa-
tion to extract man-made object in the complex urban environment (vi). Instead, the way for in-
creasing this analysis is the integration of features coming from different sources.  

 

Classification of land cover is one of the primary objectives in the analysis of remotely sensed 
data. To aid in this process, data from multiple sensors are often utilised, since each potentially 
provides different information about the characteristics of the land cover. Thus, the fusion of mul-
tisensor data has received tremendous attention in the remote sensing literature (vii, viii, ix, x, xi) 
and mainly fusion of SAR with optical or thermal data (vi, xii, xiii, xiv, xv, xvi, xvii, xviii, xix, xx, xxi, 
xxii). Fusion of features extracted from polarimetric synthetic aperture radar and hyperspectral 
imagery was successfully conducted for land use mapping, urban characterisation and urban clas-
sification (xxiii,xxiv,xxv). However, those researches were devoted to detect built areas or to sepa-
rate different soil use classes in urban areas, with no or little attention for single man-made objects 
or structures.  
 
Over the next few years several EO satellites will be deployed in orbit, providing the international 
scientific, commercial and military communities with a wealth of new data. Many of these will carry 
advanced multi-channel imaging radars designed to combine various levels of polarisation diver-
sity.  

The main objective of this proposal is to resolve the classification ambiguity of several man-made 
objects in urban and industrial scenes using fused polarimetric SAR and hyperspectral data. Our 
main assumption is that while the polarimetric SAR measurements are sensitive to the surface 
geometry and the dielectric constant of the illuminated surface; hyperspectral data provide infor-
mation related to the biochemical origin and environmental state of the observed area.  

DATA SET 

 

The data used in this paper were obtained in the frame of a project for the Belgian Federal Sci-
ence policy. In May 2004 a flight campaign over Southern Germany was organised in order to ac-
quire data from the Hymap sensor and the E-SAR sensor at the same time over urban and indus-
trial sites.  The data used in the illustrations in this paper are part of the scene acquired over the 
village of Neugilching.  

 
Hyperspectral data 

For this project HyMap data were acquired over the villages of Oberpfaffenhofen and Neugilching 
in the South of Germany. The HyMap data were acquired by the German Aerospace Agency DLR 
and contain 126 contiguous bands ranging from the visible region to the short wave infrared 
(SWIR) region (0.45−2.48µm). The bandwidth of each channel is 15-18 nm. The spatial resolution 
is 4 m at nadir and the complete image covers an area of 2.6×9.5 km. Four subsequent levels of 
pre-processing were applied: radiometric correction, geocoding, atmospheric correction (using 
ATCOR44) and the “Empirical Flat Field Optimized Reflectance Transformation” (EFFORT5). The 
pre-processing was done by the Flemish Institute for Technological Development (VITO). We re-
ceived the data corresponding to the four different levels of pre-processing and for the moment 
only the last level is used. Later we intend to apply our methods to the different levels of pre-
processed data in order to study the degradation of the classification results when less pre-
processing steps are applied. One of the final aims of the project is to develop algorithms that re-
quire the least amount of pre-processing. In all processing the first and last channel were dis-
carded. The first contains too much noise while the last is saturated. 
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SAR data 

SAR data at 2 different frequencies were acquired by the E-SAR system of the German Aero-

space Agency (DLR).  L-band data (λ=23 cm) are full-polarimetric (HH- HV- and VV-polarisation 

were acquired). For X-band (λ =3 cm) only HH and VV polarisation were acquired. All data were 
delivered as Single-Look Complex (SLC) data as well as geocoded amplitude data. The DLR also 
provided geocoding matrices that enable one to extract polarimetric information using the SLC 
data and geocode the results afterwards. The spatial resolution of the geocoded SAR data is 1.5 
m. 

 

  

Figure 1: Left: Part of original Hymap image (in RGB color composite). Right: L-band polarimetric 
SAR image (R=HH,G=HV,B=VV) 

 
Ground truth 
 

For ground truthing of the acquired data, topograpic maps and cadaster maps of the area were 
obtained. Three levels of ground truth were defined: a learning set for the classification methods, a 
learning set for training the fuzzy-logic based fusion method and finally a validation set for evaluat-
ing the results of classification and fusion. 

The considered classes are: “Roads”, “Buildings” (concrete roof), “Residence” (red roof buildings), 
“Buildings Grey” (grey roof buildings), “Grass”, “Bare soil” and “Parking lots”. The differences in 
types of buildings based on their roof type is necessary for the hyperspectral classification. For 
SAR classification on the other hand, these classes are merged into a single building class be-
cause the SAR sensor is not sensitive to the type of surface material.  

 

 

SAR FEATURE EXTRACTION 

 

From the available SAR data, different feature images were derived for classification. The first set 
consists of the speckle reduced amplitude data. These were determined from the geocoded data, 
for each channel separately. The second set consists of the results of various polarimetric decom-
position methods. These were applied on the L-Band data in single-look complex data in slant-
range coordinates and were geocoded later. For the polarimetric decompositions which require a 
spatial averaging using a sliding window, a 7x7 window was used.  
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Speckle Reduction 
 

Standard speckle reduction methods tend to blur the image. In particular edges are smoothed and 
strong isolated scatterers are removed. Because these two features are very important, A. Pizu-
rica developed a speckle reduction method based on context-based locally adaptive wavelet 
shrinkage (xxvi) and (xxvii). The idea is to estimate the statistical distributions of the wavelet coef-
ficients representing mainly noise and representing useful edges. In particular it was noted that in 
SAR intensity images, the magnitudes of the wavelet coefficients representing mainly noise follow 
an exponential distribution while those representing a useful signal follow a Gamma distribution. 
This information is used to find a threshold that allows to distinguish useful signal from noise. Prior 
knowledge about possible edge configurations is introduced using a Markov Random Field. 

Figure 2 shows the region of interest for the different available SAR images in RGB composition. 
The left image is the original L-band full-polarimetric image, the middle is the same image after 
speckle reduction and the right image is a combination of the different channels of the X- and L-
band images after speckle reduction. The figure shows that the different polarisations and the two 
frequencies provide complementary information about the objects in the scene. Comparing the left 
and middle image shows that the speckle reduction is effective in reducing the speckle noise while 
preserving the detail in the image. This is particularly important in complex and highly heterogene-
ous scenes such as urban environments. 

  

   

Figure 2: Available SAR images. Left: original SAR L-band image (R:HH,G:HV,B:VV), middle: same 
image after speckle reduction, right: combined speckle-reduced X- and L-band image 

(R:Xhh,G:Xvv,B:Lhh) 

 
 

Polarimetric decompositions 
 

For L-band full-polarimetric data were acquired. This means that in every pixel of the image, the 
complete scattering matrix was measured. The scattering matrix describes the complete po-
larimetric signature of the points on the ground. This polarimetric signature depends on the type of 
scattering induced by these objects on the ground on the incoming radar wave. Polarimetric de-
composition methods combine the polarimetric information in a way that allows inferring informa-
tion about the type of scattering produced by the elements on the ground on the radar waves. 

Several decomposition methods were developed in the past; each of them highlighting specific 
types of scattering behaviour. The most well known method is the Cloude & Pottier (xxviii) decom-
position. Several parameters were derived from their method: entropy H, scattering angle 
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α, combinations of the entropy and anisotropy A: HA, H(1-A), (1-H)A and (1-H)(1-A) and the value 

of the largest eigenvalue of the polarimetric coherency matrix, λ1. 

The other decomposition methods convert the polarimetric information into an abundance of three 
types of scattering. In this paper the decomposition methods of Barnes and Holm (xxix), Huynen 
(xxx), Freeman (xxxi) and Krogager (xxxii) are also considered.  Figure 3 shows the results of the 
various decomposition methods. The figure shows that the different decomposition methods high-
light different aspects of the scene. On the other hand the fact that they need to be determined 
using averaging windows on the slant-range image (7x7 in this case), introduces artefacts and 
reduces the resolution of the results. Whereas it was already show (xxxiii) that these features are 
very important for classifying agricultural scenes, they are likely to be less valuable in urban 
scenes where it is very important to keep the highest possible spatial resolution. 

 

     
 

   

Figure 3: Results of the applied polarimetric decompositions Cloude (H,α,A), Barnes, Freeman, 
Holm, Huynen and Krogager. 
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DETECTION AND CLASSIFICATION METHODS 

For this project on fusion we have chosen to use classification methods that are based on a detec-
tion per class in each pixel. The first method does this by assigning abundances of each class to 
each pixel. The second method provides probability images for each class. These can be com-
bined into a classification image by assigning to each pixel the class for which respectively the 
abundance or probability is highest. However the advantage of using classifiers based on detec-
tors that provide probabilities is that it is also possible to delay the decision until the results of dif-
ferent classifications or input feature sets are fused.  This will be used in two of the developed de-
cision-level fusion methods discussed in below. 

 

Matched filter 

The matched filter (xxxiv) detects the abundance of end-members in each pixel of the hyperspec-
tral image by matching their spectrum to the one of each end-member or to the average of the 
spectra of each class of the learning set. The result is an abundance measure for each class that 
in each pixel estimates the proportion of that class within the pixel. This is a “soft classification”. In 
order to obtain a pixel-wise classification image, to each pixel the class corresponding to the high-
est abundance is assigned. This results in a “hard classification”. As mentioned before, for fusion, 
either the soft or the hard classification results can be combined.   

 
Detection and classification using logistic regression 

Logistic regression (LR) (xxxv) is developed for dichotomous problems where a target class has to 
be distinguished from the background. The method combines the input parameters into a non-
linear function, the logistic function:  
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i
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The logistic regression (i.e. the search for the weights βi ) is carried out using Wald's forward step-
wise method using the commercial statistics software SPSS. In the Wald method, at each step, 
the most discriminating feature is added and the significance of adding it to the model is verified. 
This means that only the features that contribute significantly to the discrimination between the 
foreground and the background class are added to the model. The LR thus implicitly performs a 
feature selection. 

Applying the obtained logistic function for a given target class to the complete image set, a new 
image - a ``detection image'' - is obtained, in which the pixel value is proportional to the conditional 
probability that the pixel belongs to the target class, given the set of used features.  

The detection images for the different classes are combined into a classification image by attribut-
ing to each pixel of the classification image the class that corresponds to the highest value of the 
detection image.  
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DECISION-LEVEL  FUSION 

Three decision-level fusion methods were used and compared in this paper. They are briefly de-
scribed below. 

 
Weighted majority vote 

 

The confusion matrices obtained from the intermediate learning set were used to design a 
weighted majority vote. The method uses the probability or abundance images for each class as 
given by the LR-based and the MF-based classifiers respectively.  

In a first step the probabilities for each class from the different classifiers are summed using a 
weighted sum. The weights of the sum are determined using the average of the  UA and PA for 
the class with respect to the sum of theses averages over the different classifications to be fused. 
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Pi(x,y) is the probability of having class i in pixel (x,y) averaged over all classifiers, Pij(x,y) is the 
probability for detector (or classifier j). 

The class i for which  Pi is largest, is assigned to the pixel. 
 
SVM based fusion 

 

A support vector machine (xxxvi) using radial basis functions was used to combine the probability 
images from the different classifiers. The SVM of the commercial software package ENVI  was 
used.  
 
Decision tree based fusion 

 

A simple binary decision tree classifier (xxxvi) was used to combine the different classification im-
ages.  The decision tree implements simple rules such as:  

Assign (x,y) to Resid if (C1(x,y)=Resid and (( C2(x,y)=Resid) or (C3(x,y)=AnyBuilding))  

For this paper the binary decision tree implemented in ENVI was used. 
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RESULTS 

 
Classification results 

Different classification results were compared: 

• Results of matched filtering applied on the 30 first PCA channels obtained from the HyMap 
data (MF PCA 1-30) 

• Results of logistic regression from the 124 original HyMap channels (LR_optical). This is 
possible because the LR performs an implicit channel selection. 

• Results of LR on original SAR data and speckle reduced SAR data (LR OrigSAR & SR) 

• Results of LR on polarimetric decomposition images (LR Polsar) 

• Results of LR of the combined SAR set (LR ALLSAR) 

Table 1 shows the user accuracy and producer accuracy for each of the classification results. 
From the table it is clear that the two classifications based on the HyMap data give better results 
than those obtained from the SAR data. Furthermore the results of LR on the original HyMap 
channels are better than those obtained by the Matched filter on the PCA bands. 

While the SAR results are less good than the hyperspectral results, the difference between them 
is not that large for some of the classes. Furthermore detailed examination of the confusion matri-
ces show that different combinations of classes are confused in the SAR classification than in the 
hyperspectral classification. This is the reason why fusion is likely to improve the classification re-
sults.  

Table 1: Classification results for hyperspectral data 

PA UA PA UA

% % % %

Roads   94.81 81.56 95.78 44.7

Buildings 51.66 85.93 78.55 100

Residence 98.33 88.94 100 100

BuildingGrey 100 71.58 98.49 100

Bare Soil 100 99.31 100 100

Parking Lots 63.42 65.75 94.1 80.76

Grass 95.38 99.37 87.17 99.65

MF PCA1-30

Hyperspectral

Classes
LR Optical

 

 

Table 2: Classification results for SAR data 

PA UA PA UA PA UA

% % % % % %

Roads   38.31 30.73 27.27 23.86 63.31 24.38

Buildings

Residence

BuildingGrey

Bare Soil 95.47 65.39 91.81 63.96 97.39 70.49

Parking Lots 99.12 57.93 83.78 18.65 91.15 36.4

Grass 80.62 98.61 42.92 96.68 57.87 97.57

SAR

77.59 89.61

Classes

75.57 83.13 79.89 80.56

LR ALLSARLR POLSARLR OrigSAR & SR
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Visual comparison of detection results 

Both the matched filter and the logistic regression result in detection or rule images for each class 
that represent in each pixel the probability of that pixel belonging to the considered class. It is in-
teresting to examine these detection images for each class for the different classifications that 
were used. Figure 4 show on the left a color composite of three detection images corresponding to 
the class “residential”, i.e. red-roofed buildings. In red is the result of the logistic regression based 
using the HyMap data, green: results of matched filtering, blue is the detection result of all build-
ings obtained by LR on the complete set of SAR feature images. For most true red-roofed build-
ings the three classifiers agree (white on the left image). However, there are three regions that 
only the first classifier detects as residential. On the color composite HyMap image they indeed 
seem red, On the SAR image on the other hand they are very dark; corresponding to a smooth 
area. The region on the left of the image is the running piste and the athletic facilities of a sport 
stadium, the one just below is a parking area and the rectangular region on the upper right is ac-
tually a tennis court (as verified by the cadaster map). From this visual inspection it is clear that the 
fusion can indeed improve the classification results in highly complex scenes such as urban or 
industrial sites. It is easy to highlight these differences between classifications automatically. Inter-
preting them correctly is quite a different matter and requires skilled photo-interpreters. Neverthe-
less, a set of images as shown in Figure 4 could greatly facilitate the work of manual photo-
interpretation.  

    

   

Figure 4: Left: Fused detection result for the class "residential", middle: corresponding Hymap im-
age. Right: SAR composite (R=Xhh, G=Xvv, B=Lhh) 

 
 
Decision-level fusion results 

Table 3 shows the UA and PA for the different classes that were obtained by the various decision-
level fusion methods. The fusion was performed by combining four results: the results of the MF 
on the 30 first PCA bands, the LR on all Hymap bands, the LR on the combined set of original and 
speckle reduced SAR data and the LR results of the POLSAR decompositions. For the weighted 
majority vote and the SVM the probability (or abundance) images were used as input. For the de-
cision tree fusion, the classification images were used. All fusion methods use a second training 
set that is independent of the training set used for training the classifiers and also independent of 
the validation set that was used to construct the confusion matrices. 

The table shows that all types of fusion do indeed improve the classification results when com-
pared to the UA and PA presented in  Table 1 and Table 2. The decision tree gives the best re-
sults. Figure 5 shows the results of the three decision-level fusion methods. For the decision tree 
fusion a class “unclassified” is present because not all possible nodes of the tree are assigned to a 
class. These unclassified areas should be examined further. 
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Table 3: Results of the different decision-level fusion methods 

PA UA PA UA PA UA

% % % % % %

Road 99.07 42.8 100 32.6 99.65 83.09

Building 59.37 77.15 81.56 100 76.05 100

Residence 91.12 98.87 100 100 100 90.24

BuildGrey 100 100 100 100 100 100

Bare Soil 100 93.44 100 100 100 100

Parking Lots 94.29 95.66 92.37 98.09 98.09 99.83

Grass 42.64 100 34.05 100 100 100

Classes

Fusion Results

Weighted Maj. Vote SVM Decision Tree

 
 

 

 

Figure 5: Result of the decision-level fusion. Left: Majority Vote, middle: SVM, right: Decision Tree 

CONCLUSIONS 

This paper investigates the fusion of hyperspectral and polarimetric SAR (PolSAR) data for the 
classification of urban scenes. The first step in the processing consist in feature extraction and 
feature-based supervised classification. Classification results are fused at the decision level. Three 
types of decision-level fusion are used and results compared. 

Two classifiers were applied: the matched filter and a classifier based on logistic regression. Both 
provide, besides a classification image, abundance or probability images for each class that can 
be used for the fusion. 

The comparison of classification results obtained from SAR and hyperspectral show that, when 
used as single sensors, the hyperspectral outperforms the SAR. However the SAR results are still 
of good quality and furthermore the confused classes are different for SAR and hyperspectral. 
This is a first indication that their fusion could improve the results. 

Three fusion methods were applied in the frame of this paper: a weighted majority vote, a support 
vector machine and a decision tree They all combine the classification or detection results. The 
results of fusion are better than those obtained for a single sensor. This shows that the two types 
of sensors are indeed complementary. The best results are obtained for the decsion tree based 
fusion, for which a global kappa of 98% is reached on the validation set.  These results need to be 
verified further on larger regions and different test-sites.  
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The main added value from the SAR comes from the speckle reduced images. It was noted in this 
research that the results of polarimetric decomposition of the PolSAR do not add significantly to 
the classificationresult for urban areas, contrary to agricultural areas where it is very important. 
The reason for this is that the polarimetric decomposition is calculated on running averaging win-
dows (of 7x7) and this degrades the spatial resolution. A possible solution could be to segmet the 
image first and calculate the decompositions only inside the uniform regions. This is a topic for 
further research. 

On  the other hand we would like to investigate spatial reasoning and the effect of adding the re-
sults of a dark and bright line detector in the SAR feature set.  Other types of decision fusion e.g. 
fuzzy-logic based fusion or methods based on dempster-shafer or neural networks will also be 
investigated. 
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