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Abstract: Image registration, the task of aligning two images, is a fundamental operation for applications like image 
stitching or image comparison. In our project in surveillance for route clearance operations, a drone will be 
used to detect suspicious people and vehicles. This paper presents an approach for real-time image 
alignment of video images acquired by a moving camera. The high correlation between successive images 
allows for relatively simple algorithms. We considered region segmentation as an alternative to the more 
classical corner or interest point detectors and evaluated the appropriateness of connected component 
labeling with a connectivity defined by the gray-level similarity between neighboring pixels. Real-time 
processing is intended thanks to a very fast segment-based (as opposed to pixel-based) connected 
component labeling. The regions, even if not always pleasing the human eye, proved stable enough to be 
linked across images by trivial features such as the area and the centroid. The vector shifts between 
matching regions were filtered and modeled by an affine transform. The paper discusses the execution time 
obtained by this feasibility study for all the steps needed for image registration and indicates the planned 
improvements to achieve real-time. 

1 INTRODUCTION 

Image registration, a very important field of image 
processing and computer vision, is the task of 
aligning pictures, a fundamental step for applications 
like image stitching, medical image alignment or 
camera motion compensation. 

Images are usually registered by intensity-based 
matching or feature-based pairing (Zitova and 
Flusser, 2003; Goshtasby, 2005). The common 
intensity-based matching consists in image patch 
cross-correlation to find corresponding areas in both 
images, a time consuming process due to the large 
space of search (image dimension and transform 
parameters). The feature-based approach consists in 
extracting in both images remarkable points, lines or 
contours and in pairing them. The small memory 
need and computational load of the latter approaches 
have given rise to many successful and efficient 
methods like SIFT (Lowe, 2004) and ORB (Rublee 
et al., 2011). 

We are currently active in a European Defence 
Agency project of the Research and Technology 
programme IEDDET for countering Improvised 
Explosive Devices (EDA, 2017). It addresses the 
topic of future route clearance operations for which 

an early warning phase is in charge of pre-screening 
the area to highlight any suspicious presence of 
people or vehicles. To realize this, a test area will be 
flown over by an Unmanned Aerial Vehicle 
equipped with visible and thermal infra-red cameras. 
The thermal camera has been selected for its 
capacity to detect individuals and vehicles thanks to 
its temperature sensitivity while the visible camera is 
more appropriate for image registration. 

For image registration, we propose to match 
uniform regions as an alternative to the more 
classical corners or interest points. Due to the 
similarity of images taken from a sequence, regions 
can provide for several simple and robust features, 
obtained with little development and for small 
computational effort. They can bring geometrical 
and radiometric information or mix local (contour) 
and regional characteristics. They also represent a 
useful description for object tracking, after image 
registration. 

Real-time responses in the context of security or 
rapid processing in the case of automatic detection 
in hours of video footage impose fast algorithms. 
For the sake of estimating local shift between 
images to be registered, most fast approaches detect 
interest points and match them across images (Lowe, 



2004; Rublee et al., 2011). Many works preferred to 
optimize the image intensity comparison of local 
areas (blocks). For instance (Puglisi and Battiato, 
2011) relied on efficient integral projections while 
(Kim et al., 2008) limited the number of blocks and 
sub-blocks to be analyzed, and estimated the best 
correlation from the number of matching edge points 
in sub-blocks. A more recent trend for acceleration 
consists in exploiting parallel computing from the 
central or graphics processing unit (Zhi et al., 2016; 
Shamonin et al., 2014). In this work we planned to 
explore the region approach in terms of speed, 
registration potential and code simplicity. 

The rest of the paper first outlines the 
methodology in section 2, then details how images 
are segmented into regions in section 3, and how 
these are matched in order to model the image 
transform for registration, subject of section 4. 
Registration results are presented in Section 5 and 
time figures are discussed for this feasibility study 
and for the planned developments with the suggested 
improvements. Section 6 draws conclusions and 
outlines our future work. 

2 METHODOLOGY 

We were motivated to show that for image 
registration, region extraction and matching is a valid 
alternative to the traditional feature-based approaches 
in terms of speed and precision, and this for a 
software implementation easy to code and control. 

Our development is based on the segmentation of 
images into regions thanks to a very fast detection of 
connected components. Instead of considering pixel 
connectivity, horizontal segments are first detected 
thanks to a fast horizontal connectivity check. Then 
the vertical connectivity is used to link segments. 
The representation of regions exploits directly the 
segments and is coded as a list of segment leftmost 
and rightmost x coordinates. This representation 
allows for memory compactness and very fast 
computation of classical geometrical features. 

With such a speed for region segmentation, the 
difficulty for choosing a threshold can be alleviated 
by testing several threshold values for the reference 
image (done once) and for the images to be 
registered. The number of regions can be used as 
selection criterion but some applications may prefer 
to use all detected regions (for all thresholds tested). 
In this feasibility study, only one threshold was 
necessary, due to the high correlation of images 
taken from a short sequence. 

The regions extracted in images are matched by 
features so that provisional shift vectors (Dx,Dy) are 
collected all over the image. These vectors are 
filtered and modeled by an affine transform. This 
image transform made of 6 coefficients is used to 
align the image to the reference so that image 
differencing can highlight objects in motion. 

3 IMAGE SEGMENTATION 

The segmentation of images follows the approach of 
connected component labeling, with a connectivity 
rule based on the gray-level difference of 
neighboring pixels. The implementation employs an 
efficient representation of regions by segments to 
offer speed and to optimize memory accesses and 
size. 

3.1 Connected Component Labeling 

Connected Component Labeling, the process of 
assigning a unique label to each group of connected 
pixels, is usually applied to binary images. Refer to 
(Grana et al., 2010) and (Lacassagne and 
Zavidovique, 2011) for a detailed review of 
pioneering and recent approaches. 

Most algorithms use a 2-pass procedure that first 
finds connected pixels and marks them with a 
provisional label, storing possible equivalence of 
labels when branches with different labels meet. 
They then scan the image a second time to give a 
final label, result of equivalence resolution. 

The improvements brought to this general 
approach concern the way the equivalence of labels 
is resolved, how memory accesses are optimized to 
reduce memory cache misses and how much 
conditional statements are minimized to avoid 
stalling the processing pipeline in RISC computers. 

One of the fastest published methods on RISC 
architectures is called LSL (Light Speed Labeling, 
Lacassagne and Zavidovique, 2011) and consists in 
the storage of foreground regions (in a binary image) 
as run length codes (RLC) and not as an image. It is 
exactly the way we improved our pixel-based 
segmentation by connected component. The very 
good results and thorough evaluation of LSL make 
us confident that once our development for segment-
based (RLC) image segmentation will be finalized, it 
will offer a fast and valid solution, as preliminary 
tests already showed. 

 
 
 



3.2 Pixel Connectivity 

Two pixels are considered connected if they touch 
(in 4- or 8-Neighbor connectivity) and if their gray-
level difference complies to some rule. We adopted 
a constant threshold. This definition for connectivity 
allows regions to climb or descend hills of limited 
slopes to form large areas that are bordered by edges 
with a minimum contrast. 

The choice for the threshold is crucial to avoid a 
myriad of useless small regions or a reduced set of 
very large areas. For speed reasons, we did not 
choose for an adaptive solution with varying 
threshold, such as the Maximally Stable Extremal 
Regions (Matas et al., 2002). Region growing 
methods usually perform non-contiguous memory 
accesses that may result in cache misses. Instead, we 
observed that 256-level images are well segmented 
with a fixed threshold value between 2 to 8, 
depending on the edge strengths. Values 3 or 4 are 
often appropriate values. 

One good threshold value can be obtained 
automatically from a rough estimation of the 
gradient histogram. Alternatively our fast 
segmentation algorithm can be run several times to 
select the best threshold when matching two images, 
or even to use all obtained regions (for all 
thresholds) if more candidates are needed. Mention 
that the images in the sequences are captured within 
a short time interval and from a similar point of 
view. A threshold good for one image is likely to be 
fine for the others. 

3.3 Region Detection 

As soon as two pixels are connected horizontally, a 
segment is initiated by storing the first x position 
into the array of segments xT. The x position of the 
last horizontally connected pixel of this segment is 
stored in the next value of xT. The array xT is filled 
progressively during the image scan from top to 
bottom. Thanks to the increasing addresses of the 
accesses to the image and xT, memory cache misses 
are minimized.  

At the beginning of each row during the scan 
process, the index of the first free value in xT is 
stored in a small table yT that contains h (image 
height) elements. This table offers a simple way to 
access the segments of any image line and in 
particular the line preceding the currently processed 
one. yT also gives a compact and inexpensive way 
to keep the y position of a segment without 
explicitly storing y values for each segment. 

3.4 Region Labeling 

Subsection 3.3 explained horizontal connectivity. 
The vertical connectivity is checked with stored 
segments (xT) of the previous image line. Again, 
memory accesses are efficient as xT values of the 
previous line are probably still in the cache. As 
shown in Figure 1, a new segment S may link 
segments with different labels Li, when for instance 
two or more branches get connected. This calls for 
label equivalence and its resolution. 

All segments of the first image line receive a 
unique label assigned in increasing order. From the 
second line, a comparison is made between segment 
ends of the current line and the previous one to see if 
a label can be propagated. Since xT values are 
increasing along each image line, the comparison 
between segments of two consecutive lines is done 
efficiently. For a label to be propagated from 
segment L on line y-1 to segment S freshly detected 
on line y, there must exist at least one pixel from L 
touching one pixel of S, with a gray-level difference 
under the threshold. 

 

Figure 1: Segment labeling for new segment S with 
equivalences for L1, L2 and L3. 

Several label propagation cases may happen. If 
there is no segment L touching S, a new (increasing) 
label is given to S. If there is just one, its label is 
assigned to S. If there are several segments L, all the 
corresponding labels Li have to be connected in an 
equivalence table. 

The equivalence table contains the provisional 
final label (called parent) for each label. Each table 
entry (label) is initialized with its table index. Once 
equivalences are found, the minimum value (so, the 
oldest assigned one) of the parent labels of all labels 
connected by segment S is used as new parent label 
for all connected labels. 

At the end of the image scan, all segments are 
found and compactly stored in the xT array and 
easily accessed line by line thanks to the yT array. A 
label array called labT (indexed by simplicity the 
same way as xT, or half its index to gain some 
memory) contains the segment provisional label 
values. To resolve equivalences, the table values are 
replaced by their parent label and compacted since 
non-parent labels become useless. labT values are 
updated accordingly so that at the end, the remaining 



regions have the minimum number of labels from 1 
(0 is reserved for no_region) to the number of 
regions, by order of appearance when scanning the 
image. 

 
Figure 3 shows the result of image segmentation 

into regions for two images of the sequence 
separated by 4 seconds of Figure 2. 

 

Figure 2: Two images of a sequence separated by 4 
seconds. 

 

Figure 3: Region extraction and labeling for the reference 
image and the image to register. 

 

 

 

 

4 IMAGE REGISTRATION 

Image registration is realized by a 4-step procedure. 
First, features are extracted for the regions detected 
during image segmentation. Secondly, region 
features of an image pair are compared to identify 
possible matches. Each match defines a shift vector 
(Dx,Dy), probable displacement of a region. Thirdly, 
shift values are used to fit an affine transform 
modeling the local shift all over the image. Finally, 
the image to register is warped by the affine 
transform to be aligned to the reference. 

4.1 Region Features 

Several region features are easily and efficiently 
extracted from the way regions are stored as a 
collection of segments. The most direct feature is the 
area in pixels, computed very quickly for all regions 
by scanning once xT, and summing the segment 
lengths for each region. Region x and y value 
averages, also accelerated by the segment-oriented 
representation with xT and yT, give the centroid 
coordinates Cx, Cy and offer a robust localization 
for regions. 

Like the first order moment Cx and Cy, the 2nd 
order moments Mxx, Mxy, Myy, physically related 
to inertia, can be efficiently computed. They also 
directly lead to the maximum and minimum inertia 
axes, and give a hint to the region orientation.  Other 
easy geometrical features are the bounding box and 
the region contour, with possible corner detection. 
These last features should be included when regions 
are not numerous or when the centroids are not 
sufficiently precise, usually for medium or large size 
regions. 

Aside from these geometrical characteristics, 
some obvious radiometric values can be rapidly 
evaluated (e.g. minimal and maximal gray values, 
average, standard deviation). 

4.2 Region Matching 

In this feasibility study, we implemented feature 
matching by a direct comparison of only two 
features (area, centroid position) with quite a large 
tolerance. The first image of a sequence is taken as 
reference to register any of the following images, 
one at a time. 

Two regions of similar area (up to 10% 
difference) constitute a matching pair if their 
centroid lies within a distance D, by default set to 
1/10 of the image largest dimension. 

 



 

Figure 4: Selected shift vectors. 

The shift vectors (Dx,Dy) between matching 
regions centroids are collected to later derive a 
motion vector field. Even with the current 
elementary region matching with two features, a 
dominant peak clearly appears in the 2-D histogram 
of (Dx,Dy). The distribution around this peak 
corresponds to the dependence of the local shift 
values with image position since the camera 
movement may induce a perspective transformation 
or rotation. In our tests, the false candidates due to 
wrong matches were distributed sparsely in the 
histogram and did not challenge the dominant peak. 
The selected shift vectors after histogram peak 
selection are shown in Figure 4. A majority of 
vectors are coherent in size and direction. 

We will have to evaluate in practice, for limited 
movements corresponding to fast frame rates (10 or 
25 Hz), and depending on drone motion patterns, if 
we need to consider multiple peaks, for instance for 
the case of a strong rotation. One possible 
implementation then consists in dividing the frames 
into tiles in which the local apparent motion is closer 
to a translation, resulting in a dominant peak if there 

are enough matching regions in the tile and few 
moving objects. 

If the precision of Dx or Dy from the centroids is 
not sufficient, other points may be searched for, 
either from the region contours, or from the gradient 
peaks near region borders. 

4.3 Shift Modeling 

The candidate list of (Dx,Dy) values was restricted 
in the previous subsection to the histogram peak 
since the area feature (and the maximal centroid 
distance D) was not constraining enough to filter out 
most of the false matches. To further fight against 
erroneous shift estimations but also to compensate 
for the possible lack of shift values in some image 
area and to capture the dependence of shift values 
with image position, a global model for (Dx,Dy) is 
looked for in terms of the image coordinates. We 
opted for an affine transform: 

X = Ax+By+C (1)

Y = Dx+Ey+F (2)

where x,y are the coordinates of the image to be 
registered and X,Y are the reference image 
coordinates. 

The coefficients of (1) and (2) are currently 
estimated by least mean squares with the function 
getAffineTransform from the openCV library. As 
this function is called from our C program with a 
process launching Python, shift modeling represents 
a slow step in the current implementation of this 
feasibility study. 

4.4 Image Warping 

An image warping operation is applied to register an 
image of the sequence to the reference image. This 
operation typically scans the result frame to write 
the bilinear interpolation of 4 pixels from the source 
surrounding the coordinates projected by the inverse 
transformation of equations (1) and (2). 

Although easy in concept, this operation is slow 
(40 msec for a 2 Mpixel image) since all image 
pixels are considered. 

5 RESULTS AND DISCUSSION 

The main goal of the presented research is to offer 
camera motion compensation. Figure 5 shows the 
difference between a registered image and the 
reference. We see that the correction is globally fine. 



A residual error of 2 or 3 pixels exists in some areas. 
This is mainly due to the approximated localization 
of regions by their centroid. An approach based on 
region contours would be more precise but is not 
necessarily needed as for the detection of large and 
fast moving objects. 

 

Figure 5: Difference between the reference and the 
registered images. 

A second objective of our development is to 
offer fast processing. We intend to analyze the video 
flow in real-time or to process stored sequences as 
fast as possible. This is less of a challenge with 
nowadays computers, but the standard image 
resolution has increased. 

For this feasibility study we recorded sequences 
with a Samsung A5 (2016) in the MPEG 1080p 
format. Each image has 1920 x 1080 pixels (2 
Mpixel). The given execution times were obtained 
by a computer equipped with an Intel i5-4590 at 3.3 
GHz (27 Gb of RAM), using a single core. 

Table 1 gives an overview of the current and 
prospected execution time for the different steps of 
the proposed registration approach in the case of 2 
Mpixel images. 

Table 1: Timing figures for a 2 Mpixel image. 

Processing Current [ms] Prospected [ms]
(Pre-processing) (20) (20)

Segmentation 140 15 
Region Features 1 5 
Region Matching 2 10 
Shift Modeling 100 10 
Image Warping 40 20 

Total 283 (+20) 60 (+20)

Some pre-processing might be needed, for 
instance in the case of noisy images. We have 
indicated an optional time of 20 ms to account for 
simple low-pass filtering or equivalent processing. 

Our implementation for this feasibility study 
used a pixel-based region segmentation that runs in 
about 140 ms. The segment-based version, not yet 
finalized, currently detect similar regions in less than 
15 ms. This impressive timing is comparable to 
published works about connected component 
labeling from binary images (Grana et al., 2010), 
considering that gray-level comparison needs extra 
work. Only the regions with a pixel count in the 
range of 50 to 5000 pixels were kept. For the 
considered sequence, this represents more than 500 
regions. 

The computation of features used in section 4 
(area and centroid) is really fast (less than 1 ms) 
thanks to the storage of regions as a list of segments. 
We will explore additional features to increase the 
region discriminative power. Some extra time has 
been foreseen in Table 1 for possibly more 
computationally demanding features. 

Feature matching is also very fast (about 2 ms in 
our tests). About 3000 matching candidates were 
reduced to roughly 200 ones by the histogram peak 
selection. The impact on time for increasing the 
number of features is quite difficult to estimate since 
more discrimination will speedup histogram 
processing. 

The estimation of the affine transform is a 
bottleneck in the current implementation because it 
relies on a Python library called as a separate 
process from a C program. About 100 ms are 
required to find the model coefficients thanks to 
roughly 200 vectors (Dx,Dy), from which about half 
will be rejected during refinement. Due to the large 
proportion of valid region pairs, the solution can 
benefit in execution time from a RANSAC 
procedure (Fischler and Bolles, 1981). From 
preliminary tests we believe in a 10 times speedup 
compared to the current implementation. 

The current warping operation by the affine 
transform is also a heavy step (about 40 ms), since 
all pixels are processed and require the access of 4 



neighbors for bilinear interpolation. A possible 
speedup for motion detection applications consists in 
warping first at a lower resolution, and/or with the 
nearest neighbor pixel, and to apply warping at full 
resolution only where differences with the reference 
are significant at low resolution. 

According to Table 1, if we target an application 
with 2 Mpixel image sequences, 60 ms (or 80 with 
pre-processing) are likely to be needed for all the 
processing steps. At a rate of 10 images per second, 
40 ms (or 20) are left to handle moving object 
detection and tracking, a task possibly helped by the 
available regions extracted for image registration. 

6 CONCLUSIONS 

We presented a feasibility study for real-time image 
registration that exploits fast image segmentation 
into regions based on pixel connectivity along and 
across horizontal segments. These segments form a 
compact representation of the regions, appropriate 
for the fast extraction of classical features such as 
the area, the centroids and the 2nd order moments. 

According to preliminary tests, video sequences 
of 2 Mpixel images can be registered at 3 Hz. Based 
on the discussion about identified slow operations, 
the same sequences are likely to be registered and 
analyzed for object tracking at 10 Hz. 

Some refinements and improvements mentioned 
in the discussion of section 5 are our future concern. 
We will first finalize the segment-based region 
extraction algorithm. We will then analyze the 
potential of additional region features and adapt 
region matching accordingly. We will look for 
another model fitting algorithm, directly callable 
from C. And finally, we will test other sequences, 
and evaluate the influence of parameters. 

ACKNOWLEDGEMENTS 

We would like to thank the Belgian MoD and in 
particular the Royal Higher Institute for Defence for 
supporting this research. 

REFERENCES 

Zitova, B., and Flusser, J. (2003). Image registration 
methods: a survey. Image Vision Computing 21, pages 
977-1000. 

Goshtasby, A. (2005). 2-D and 3-D Image Registration, 
for Medical, Remote Sensing and Industrial 
Applications. Wiley Press. 

Lowe, D. (2004). Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of 
Computer Vision, 60 (2):91-110. 

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. 
(2011). ORB: an efficient alternative to SIFT or 
SURF. In IEEE International Conference on 
Computer Vision (ICCV), pages 2564-2571. 

EDA, (2017). EDA programme launched to improve IED 
Detection. https://www.eda.europa.eu/info-hub/press-
centre/latest-news/2017/01/12. 

Puglisi, G., and Battiato, S. (2011). A Robust Image 
Alignment Algorithm for Video Stabilization 
Purposes. IEEE Transactions on Circuits and Systems 
for Video Technology, 21 (10):1390-1400. 

Kim, N.-J., Lee, H.-J., and Lee, J.-B. (2008). Probabilistic 
Global Motion Estimation Based on Laplcian Two-Bit 
Plane Matching for Fast Digital Image Stabilization. 
EURASIP Journal on Advances in Signal Processing, 
Volume 2008, pages 1-10. 

Zhi, X., Yan, J., Hang, Y., and Wang, S. (2016). 
Realization of CUDA-based real-time registration and 
target localization for high-resolution video images. 
Journal of Real-Time Image Processing, May 2016, 
pages 1-12. 

Shamonin, D., Bron, E., Lelieveldt, B., Smits, M., Klein, 
S., and Staring, M. (2014). Fast parallel image 
registration on CPU and GPU for diagnostic 
classification of Alzheimer’s disease. Frontiers in 
Neuroinformatics, Vol 7. 

Grana, C., Borghesani, D., and Cucchiara, R. (2010). 
Optimized Block-based Connected Components 
Labeling with Decision Trees. IEEE Transactions on 
Image Processing, 19(6):1596-1609. 

Lacassagne, L., and Zavidovique, B., (2011). Light Speed 
Labeling. Journal of Real-Time Image Processing, 
6(2):117-135. 

Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). 
Robust wide baseline stereo from maximally stable 
extremal regions. In British Machine Vision 
Conference 2002, pages 384-393. 

Fischler, M., and Bolles, R. (1981). Random sample 
consensus: a paradigm for model fitting with 
applications to image analysis and automated 
cartography. Communications of the ACM, 24(6):381-
395. 

 


