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Abstract—This  paper  presents  a  method  for  trajectory
extraction in videos acquired with a slightly moving camera.
Trajectories are initialized at Shi-Tomasi [1] feature points and
tracked thanks to the Lucas-Kanade [2]  algorithm from the
openCV  library  [3].  New  feature  points  are  regularly
introduced to compensate for track losses and to handle newly
appeared objects. A simple and fast method for camera motion
compensation has been implemented, using the fact that near
static scene points undergo an equal translation between any
two images. Local histograms of displacement normally exhibit
a  clear  peak  since  our  application  considers  scenes  with
relatively  few  moving  targets.  These  peaks  designate  which
tracks  and  thus  which  points  are  best  to  estimate  the
homographies  representing  motion  between  frames  of  the
sequence.  Tracking  results  for  pedestrian  and  vehicles  with
camera motion compensation are shown and discussed for two
test  cases  with different environment,  scenario and different
video quality.  The usefulness of camera motion compensated
trajectories  is  demonstrated  by  an  example  of  target
classification  based  on  track  maximal  speed  and  possible
hotspot detection from long track pauses.

Keywords-surveillance;  Unmanned  Aerial  Vehicle;  feature
points; trajectories; camera motion compensation

I.  INTRODUCTION

The domain of surveillance is in full development on the
one hand due to the regular recall from terrorism events and
on the other hand thanks to the technological  advances in
sensors  and  platforms.  In  particular,  drone  (or  UAV,
Unmanned Aerial Vehicle) applications have literally taken
off these last years. Several cues make UAVs appropriate for
surveillance. First, the aerial view is in many circumstances
advantageous  to  track  people  or  vehicles  and  to  estimate
their position and speed. Secondly,  under the condition of
flight  authorization,  the flexibility of a  drone allows for  a
quick deployment and with a reduced risk for human lives.
Thirdly, a wide range of drones with different properties is
available, from the long endurance and high altitude vehicles
suited  for  persistent  surveillance,  to  the  small  and  agile
copters adapted to more dynamic interventions.

This  paper  describes  a  method  to  extract  vehicle  and
people trajectories from aerial videos captured from a UAV
with a camera with fast rate but relatively low quality. As a
preliminary study, Full HD videos were considered to design
a solution for  tracking in reasonable  processing time.  The
objective  of  our  research  is  to  address  the  problem  of

persistent  surveillance  through  trajectory  analysis.  We
currently  deal  with  rather  small  images  and  fast  rate,  as
opposed to the usual wide area imagery captured at low rate
for which a survey on moving object detection was recently
published [4].

The proposed approach for vehicle and people trajectory
extraction  will  be  useful  for  the  detection  of  Improvised
Explosive Devices (IEDs) for route clearance, subject of the
IEDDET  project  [5]  of  the  European  Defence  Agency
program. This project plans to detect IEDs or their possible
indicators  thanks  to  several  sensors  carried  by  Unmanned
Ground Vehicles (UGVs) preceding the convoy. A UAV will
capture  RGB  and  thermal  images  to  detect  possible
suspicious behaviors of vehicles and people in the vicinity of
the convoy itinerary.

The next section describes the literature background in
tracking and camera motion compensation that motivated our
development. Section III details the implementation.  Results
are given in section IV for two test cases: a road crossing
captured by a smartphone in the Full HD video format and a
square  in  front  of  a  chapel  in  HD  Ready  resolution.
Conclusions and future directions are given in section V.

II. LITERATURE BACKGROUND

As mentioned in the survey of Jalal and Singh [6], there
are  two  opposite  approaches  for  tracking.  The  first  one
detects  objects  or  points  of  interest  in  an  image  and
associates them to the tracks made of positions detected in
previous  images.  The  other  approach,  also  called  'track
before detect', consists in initializing tracks and in matching
(for  instance  thanks  to  image  patches  or  histograms)  to
follow the underlying object parts from image to image. We
preferred this second strategy,  avoiding the delicate object
detection  in  images  from  videos  captured  by  a  moving
camera.

Taken from another perspective, as presented by Teutsch
[7], there are three ways to detect motion once a sequence
has  been  compensated  for  camera  motion:  image
differencing,  background  learning  and  foreground
segmentation, and clustering of moving local features. Since
camera motion compensation is typically solved with local
features,  the  third  way  with  clustering  can  be  used  to
compensate for camera motion and detect absolute motion.
This is the approach we have followed.

Detecting  motion from the  analysis  of  moving feature
points  has  been  adopted  by  many  authors.  In  his  thesis



Teutsch  [7]  applies  independent  motion  detection  to
compensate camera motion and to generate motion clusters
as initial object  hypotheses.  He suggests a minimum track
duration  of  5  frames  (at  25  Hz)  for  the  tracking  of  cars.
Rodriguez-Canosa et al. [8] compare vectors obtained from
tracking  with  vectors  synthesized  from  camera  motion
estimated by method [9]. A dynamic object track is initiated
if  at  least  five  feature  points  are  tracked  between  two
consecutive frames,  and if  these tracks differ  significantly
from the  synthetic  vectors.  Kalal,  Mikolajczyk and  Matas
[10]  select  good  tracks  by  focusing  on  small  position
changes  of  feature  points  after  a  forward  then  backward
tracking.  In  their  comparative  tests  the  superior  tracking
performance of this forward-backward strategy is attributed
to the fact that selected feature points are based on more than
a single image. We defend the same argument but favor more
images  by tracking points  longer  than one or  five frames
forward. In our application an interval of 5 seconds appeared
appropriate to have stable point displacements while keeping
a high probability of continuous tracking for many feature
points. Weak or wrong feature points are likely to be lost or
to become erratic after a few frames.

Many  feature  point  detection  algorithms  have  been
designed and some also provide attributes to help matching
them  between  different  images.  Acronyms  such  as  FAST
[11],  SIFT  [12]  or  SURF  [13]  are  now  common  in  the
literature  [7,  14].  We  started  our  development  with  Shi
Tomasi [1] for feature point detection and Lucas Kanade [2]
for  tracking.  We  took  advantage  of  the  existing
implementation  of  the  openCV  library.  This  pair  of
algorithms,  generally  referred  to  as  KLT  (Kanade-Lucas-
Tomasi), satisfies our requirements in term of precision and
speed for camera motion compensation and track detection.
In  the  domain  of  camera  motion  compensation,  KLT was
recognized as the most commonly used method by Teutsch
[7] in  2014.  Bonin-Font  [14] also  found KLT as  the best
alternative for their real-time application in robot navigation
compared  to  SIFT,  SURF  and  FAST  methods. In  their
experimental  survey,  Smeulders  et  al.  [15]  compared  19
visual  trackers  on  a  large  dataset  and  for  many  different
aspects of difficulty. As one of the oldest approach, KLT is
part  of the tests and does not demerit  in comparison with
other methods.

Similarly  to  some  of  the  abovementioned  works,  we
realize  camera  motion compensation  thanks  to  the feature
points  tracked  for  target  detection.  Candidates  for  a  good
estimation are the feature points related to static scene points.
These will be used to find the homography that registers one
image  to  another.  We  propose  a  feature  point  selection
mechanism that exploits the similarity of image feature point
displacement proper to static scene points lying close to each
other. For a limited time interval and thanks to the coherence
in consecutive frames, these feature points are very likely to
be correctly tracked.

Once compensated for camera motion, the tracks can  be
analyzed  to  address  the  problem  of  surveillance  [16],  in
search for suspicious behavior or presence in sensitive areas.
We  propose  the  maximal  speed  along  tracks  to  classify
targets  and  the  long pauses  along these  tracks  to  localize

possible key events. Results are presented in the form of a
scene image with superimposed tracks with some automatic
interpretation, like for video event summarization [17]. The
complete system is however planned to be semi-automatic in
the  sense  that  an  operator  will  be  tasked  to  confirm  the
automatically flagged situations by interpreting  the related
small video segments.

III. IMPLEMENTATION

This  section  details  the  implementation  of  the
components present in Fig. 1 and aiming at object tracking,
camera motion compensation and trajectory analysis. With
the  final  objective  of  detecting  suspicious  behaviors,  the
system currently highlights target tracks from their maximal
speed and localizes long target pauses.

Figure 1. Synoptic of the presented development.

A. Feature point detection

Feature points have been detected using the method of
Shi  Tomasi  [1],  thanks to  the openCV library  call  named
“goodFeaturesToTrack”. It is a corner detector based on the
matrix of local gray level derivatives. The quality as corner
for a point is assessed through the two eigenvalues of the
matrix.  The  parameter  qualityLevel controls  up  to  which
quality corners are returned, what indirectly determines their
quantity.  This  number  may  be  limited  by  parameter
maxCorners. The third argument  minDistance specifies the
minimum distance between returned corners, influencing the
maximal density, especially in highly textured areas.

B. Feature point tracking

For the set  of  feature  points  detected  in  a  first  image,
corresponding points will be searched for in the consecutive
images of the sequence. We used the opencv implementation
of the Lucas Kanade algorithm [2]. When specifying a list of
points and its corresponding image A, the call returns a list of
corresponding points for a specified image B. A status is also
returned  to  mark  which  of  the  points  were  found  a  poor
correspondence.

The algorithm registers the local  area around a feature
point in image A with image B by using the local gradient in
A and the gray difference in A and B [2]. This estimation is
refined iteratively and is improved by considering a window
of pixels with size  winSize around the feature point. Since
the  algorithm  looks  iteratively  for  the  solution,  several



termination criteria have been provided for which we use the
default values.

In  their  method,  Lucas  and  Kanade  [2]  make  a
mathematical  development  for  motion estimation which is
valid  if  the  displacement  is  of  limited  extent.  They
introduced a multi-level pyramid to ensure this condition of
small displacement, starting from the lowest resolution in the
pyramid and refining the estimation progressively  through
the pyramid levels up to the original resolution. We adopted
the default value 2 for the argument maxLevel meaning that
three levels of the pyramid are used (the original scale and
the next two lower scales).

C. Feature point re-detection

Tracking points with the method presented so far suffers
from two problems. First, some tracks will be lost over time
due  to  image  quality,  occlusion  or  change  in  target
appearance.  Secondly  newly  appeared  targets  will  not  be
tracked. To address these issues, feature points are regularly
detected and the ones sufficiently far from any current track
point initiate new tracks.  The minimum distance of a new
feature point with an existing track point was set equal to the
parameter minDistance of the feature point detector.

The frequency of introducing new tracks results from the
compromise  between  having  a  fast  reaction  to  the  two
aforementioned problems and a reasonable processing time.
We adopted a value of 1 Hz, meaning that new tracks can be
initiated  each  second.  The time required  for  feature  point
extraction  is  roughly  similar  to  the  tracking  procedure
between two consecutive images.

D. Camera motion compensation

Even in the case of a stabilized drone, image acquisition
suffers from camera motion, for instance due to the wind.
These external influences should be compensated for so that
trajectories of moving targets are accurate. Unfortunately for
a moving camera, even static scene points may move in the
imagery,  what  complicates  camera  motion  estimation.
Fortunately,  static  object  image points  close to  each  other
undergo a similar movement.

We have designed a simple and fast method for camera
motion  compensation  that  exploits  the  similarity  of  static
scene point tracks. It is based on the 5 following steps.

1) Division into sub-sequences:
In order to compensate camera motion thanks to feature

point  tracks,  a  long  sequence  is  best  sliced  into  sub-
sequences. The idea is to limit the time interval so that it is
covered  by  a  sufficient  number  of  static  point  tracks,
preferably  all  over  the  image.  On  the  contrary  the  sub-
sequence  duration should be long enough to  discriminate
static scene point tracks from slowly moving target ones. In
our experiments, we adopted a sequence division into slices
of 5 seconds.

2) Spatial division
The effect  of camera motion is rarely homogeneous in

the images due to the scene relief, the camera rotation and
the  perspective  distortion.  However,  the  displacement  of
static scene points is very similar in small neighborhoods.

The  definition  of  locality  is  camera  and  application
dependent. We adopted a division of the image area into an
integer number of tiles, horizontally and vertically,  so that
the  tiles  are  approximately  150x150  pixels.  Since  the
procedure for track selection (see 3) is very fast, the tile size
could be adapted to reach a better selection of static tracks.
This was not necessary in our tests so far.

3) Track selection
In order to get representative values of the vector field

for  the  static  scene,  we  propose  to  look  for  the  most
represented bin in the  dx and  dy histograms in each image
tile. dx and dy are the components of the total displacement
along tracks, between the first and the last frame of a sub-
sequence.  In  our  application,  the  number  of  static  scene
points is usually higher than coherent moving target points.
The  tiles  for  which  this  is  not  true  will  not  impair  the
approach as long as there remain enough tiles with correct
dx,  dy  estimation.  In  more  difficult  situations,  this  track
selection could be enhanced  by adding tracks which were
selected  in  previous  sub-sequences  or  by  including  votes
from neighboring tiles, likely to be similar for static points.

The objective of this third step is to deliver a list of tracks
normally corresponding to static scene points. For each tile,
we select the tracks which populated the maximal bin of the
dx  and  dy  histograms,  if  these  contain  at  least  3  counts.
Mention that histogram filling for all tiles only requires one
scan of all tracks present in the sub-sequence interval. The
separation into two 1-D histograms instead of a 2-D one was
motivated  by  a  reduction  in  memory  consumption  and
computation time. The bins are indeed 1-pixel wide and the
displacement after a few seconds might reach a few hundred
pixels.

The  fact  that  the  list  of  ‘static’ tracks  would  contain
moving point trajectories  is not an issue. The next step is
resilient to quite a large ratio of outliers.

4) Homographies
A transformation between two frames of a sequence can

be modeled by a homography if the scene points lie in a 3D
plane.  This  condition  is  likely  to  hold  (at  least  in
approximation)  in  our  application  involving  vehicles,
especially for a flight sensibly higher than the scene relief.

The homography between the first and last frame of the
sub-sequence is estimated by the  findHomography openCV
call. As a few moving targets or noisy tracks can pollute the
list returned by the previous step, the RANSAC procedure
[18] was specified  in the call.  This is  indeed simpler that
trying to detect and filter such undesired tracks. Thanks to
the obtained homography, the corrected coordinates of the
last frame track points are compared to the points of the first
frame to decide which of the tracks are coherent  with the
homography.  These  form a  new list  of  static  scene  point
trajectories that will be used for camera compensation of the
sub-sequence (step 5).

5) Camera compensation
Within a sub-sequence, the homography of each frame is

derived from the points of the ‘static’ tracks selected in the
previous step, compared to the same track points of the first
frame  of  this  sub-sequence.  To  get  the  transformations



relatively to the first image of the whole sequence, a simple
homography  matrix  multiplication  is  required.  Since  the
sequence slices were created with one frame overlap, the last
frame  homography  hmgrL of  the  previous  sub-sequence
already maps towards the first sequence frame. The current
sub-sequence  homographies  (except  for  the first  frame)  is
multiplied by this homography hmgrL.

Disposing of all the homographies relatively to the first
image of the sequence, each trajectory point is corrected. It is
a  fast  operation  involving  a  matrix  multiplication  that
typically concerns one or two thousands points per image.
The frames can also be warped by the homographies thanks
to the openCV call  warpPerspective to be registered to the
first frame. This is useful to detect moving objects or obtain
their shape by frame differencing.

Trajectory compensation for camera motion enhances the
detection of slowly moving objects. Speed estimation is also
more accurate. However, even after correction, static scene
points might exhibit some image movement due to imprecise
tracking  or  due  to  parallax,  where  the  homography
hypothesis of a planar scene does not hold.

E. Trajectory analysis

We propose the following trajectory classification. First,
the tracks with small extent, normally corresponding to static
scene points are classified as such and no more used (they
were  helpful  for  camera  motion  compensation).  Other
trajectories  either  refer  to  moving  targets  or  to  phantom
points. Phantom points originate from image features which
are incorrectly tracked. They usually exhibit erratic motion,
with speed or direction incoherence.

We  suggest  to  filter  out  phantom  tracks  thanks  to  a
measure  that  we  call  erraticity. This  measures  the  high
frequency content from the distance between the trajectory
curve and a low pass version of it. The low pass curve is
obtained from the coordinate average of each point with its
direct two neighbors. Our erraticity measure is the root mean
square  of  the  euclidean  distance  between  the  original
trajectory points and its  low pass version.  It  is  a value in
pixel  which  increases  with  irregularities  in  orientation
(curvature) and in point spacing (change in speed) along the
track.

For  the  remaining  trajectories  (i.e.  neither  static  nor
erratic)  we propose  the maximal  speed  as  a  first  clue  for
target classification into vehicles or pedestrians. The speed is
measured  by pixel  distance  knowing the  inter  frame  time
interval and the rough ground sampling distance. This speed
estimation is an approximation knowing that images are not
ortho-rectified. However the targeted application concerns a
high flight (500m) and a quite vertical  point of view, thus
limiting the discrepancies in the ground sampling distance.
We suggest to measure the speed of a track as the percentile
95  of  the  speed  distribution  of  its  small  tracklets  with  1
second duration. It represents a value close to the maximal
speed on the trajectory, with some tolerance against wrong
instantaneous estimations.

As a second clue for trajectory analysis, we propose to
look for long pauses in the tracks identified as belonging to
moving targets.  Stopping cars,  loitering people or meeting

individuals are examples of activities which may prove to be
informative, especially when the location, time or duration
details are taken into account.

We have considered the detection of long track pauses by
measuring  the  distance  between  points  along  the  tracks
separated  by a time interval  of  5  seconds.  For a  distance
lower than 25 cm, the candidate interval is checked to see if
its  points  effectively  stay  in  a  small  neighborhood.  The
coordinates of the central point are returned and constitute a
possible activity hot spot.

In  the  followed  ‘track  before  detect’  approach,  the
vehicles or pedestrians were not tracked as objects but thanks
to their feature points. This allows for partial occlusion as
long as some features remain visible. Grouping tracks into
object has not been done yet. It was also not our intention so
far to outline the targets neither to link partial tracks. Since
camera compensation is achieved, image differencing can be
used for target delineation. The object shape is of course a
good candidate for further target classification. Track linking
will  also  be  necessary  to  address  the  problem  of  strong
occlusion  or  change  in  appearance,  when  the  tracks  of  a
target have been interrupted due to tracking failure.

IV. RESULTS

A. Datasets

The method developed for tracking with camera motion
compensation was first tested on a sequence captured from
about 15 m above a road crossing with several cars, 2 bikes
and a few pedestrians. Since the point of view is not vertical
a quite large difference in image size exists between close
and far objects. The image sequence consists of frames with
a time interval of 0.2 s from a Full HD video (1920x1080) at
25  frames  per  second  (fps),  captured  by  a  Samsung  A5
(2016) smartphone.

For  the  targeted  application  in  the  context  of  route
clearance,  video data of a square in front of a chapel was
captured  from  the  SCHIEBEL  Camcopter  with  a  RGB
camera in the HD Ready format (1280x720) at 30 fps.

For  both datasets,  the  RGB pixel  data were  converted
into  gray  values  before  being  processed  for  key  point
detection and tracking.

B. Trajectory extraction and correction

For feature point detection, the parameters were set to get
roughly 1000 points per Mpixel. This appeared to be a good
compromise between a comfortable density of stable points
spread over the images and fast processing. The parameters
qualityLevel and  minDistance were set respectively to 0.01
and 7. The tracking parameters  winSize and  maxLevel were
given their openCV default values (respectively (21,21) and
3).  We tested  other  values  and  noticed  similar  results  for
parameter changes in the [-20%,+20%] interval. We limited
to  20  the  number  of  new  tracks  regularly  added  to
compensate  for  track  losses  and  handle  newly  appeared
objects.

The Lucas Kanade algorithm successfully tracked most
moving  objects.  This  is  certainly  helped  by  the  favorable



conditions of our application: high frame rate (0.2s), similar
appearance from a top view and rare occlusions.

Camera  motion  compensation  was  implemented  as
detailed  in  section  III.  The  values  about  sub-sequence
duration  and  space  division  or  histogram  bin  size  were
slightly changed without major implication on the correction.
The  alignment  error  between  the  frames  warped  by  their
homography and the first frame was limited to a few pixels,
depending on the sequences. This is small compared to the
trajectory amplitude of moving objects or to the object size
in case frame differencing would be used for segmentation.

C. The road crossing test case

Fig.  2  displays  the  trajectories  detected  in  a  short
sequence  of  4  seconds  of  the  road  crossing  dataset.  For
visibility reasons we only show a part of the image. Nearly
all tracks are clean, with no erratic parts, attesting the image
quality of the video, the appropriateness of the Lucas Kanade
approach and of the chosen parameters.

Thanks  to  their  large  extent,  the  trajectories  of  the
moving  cars  and  bicycles  represent the  first  focus  of
attention in the image although they are much less numerous
than the similar and small tracks of static scene points. The
impact of camera motion may seem little in this example, but
slowly moving pedestrians, such as present in the top right of
the figure  are  hardly  discriminated  from their  uncorrected
trajectories.

Figure 2. Trajectories for a part of the road crossing dataset without
camera motion compensation.

One beneficial effect of camera motion compensation is
visible in Fig. 3 which displays the corrected trajectories of
Fig.  2.  The  vehicle  tracks  are  now  rectilinear  and  more
parallel to the road, what is likely to be closer to reality.

Figure 3. Trajectories of Fig 2 after camera motion compensation.

Also, the trajectories of most ‘static points’ are reduced to
very short tracks. This is true for well defined feature points
like the corners of the pedestrian crossing white rectangles.
This  is  less  the case  for  points  in  noisy areas  like in  the
pedestrian  pavement,  much  sacrificed  by  MPEG
compression. Much worse are the cases of feature points in
the trees. First they are not purely static, due to the wind, and
secondly  they  are  usually  weak  corners  in  the  difficult
texture  area  made of  leaves.  A very  few examples  in  the
image show the weakness  in localization of feature points
along some edges.  After  correction,  their path follows the
edge.  They  are  probably  among  the  worst  feature  points
returned by the detector, having low corner quality. They are
not so well localized in the direction along the edge but were
accepted because we desired corners to cover as much of the
image as possible for precise camera motion compensation.

Quite trivially after correction, moving objects stand out
with their long path. This is obvious for the moving cars and
bicycles but the advantage of corrected tracks is clearer for
two pedestrians at the top right of the image in Fig. 3. They
could have been missed in Fig. 2 since their feature points
describe  small  non-oriented  patterns  hard  to  discriminate
from the ones of static scene points. Once corrected, these
trajectories  show a clear orientation with a  speed making
them good pedestrian candidates.

D. Surveillance for route clearance

Our  target  application  concerns  vehicle  and  people
tracking in the context of route clearance. A drone precedes a
convoy to detect suspicious activities. In the EDA program
IEDDET,  a  SCHIEBEL Camcopter  equipped with a  RGB
camera  will  send  a  continuous  MPEG  video  to  the  base
station.  The  area  location  with  suspicious  activities  of
individuals  or  vehicles  should  be  notified  to  the  UGV



responsible  to  detect  IED  indicators  before  the  convoy
arrives.

In comparison with the first test case based on Full HD
video, we faced the following image quality reduction:

 the pixel quantity per image is 56 % smaller and the
ground resolution twice as low;

 the image quality depends more on meteorological
conditions, as the Camcopter has to be operated at a
sufficient altitude (500 m in our case);

 the video may suffer from flow discontinuities due to
transmission defects.

The acquisition campaign happened during a dark and
rainy day. It was not unusual at the 500m altitude to get an
image partially fogged by a cloud. Fig. 4 shows the detected
trajectories for 50 seconds of video (250 frames). They were
superimposed on the Google image of the area. 

The retained scenario contained a dark blue van bringing
in and out people, a small truck passing by and a few people
close to the chapel and on the opposite side of the square.
The adopted top viewpoint  offered less perspective effects
and a better speed estimation. The apparent camera motion
was this time closer to a rotation. This is due to the wind
effect  on the  Camcopter  operated  in  auto  pilot  mode and
trying to keep its focus on a specified area in front of the
chapel.  The same parameter values were used for trajectory
extraction and camera compensation as for the first test case.

The lower image contrast and the lower resolution had a
wrong influence on the tracking of feature points, what was
noticeable in the amount of erratic  tracks.  The number of
track interruptions also increased, but as a consequence of
new situations. First, the vertical  observation of a walking
person suffers more from the variability of his shape contour,
what  disturbs  tracking.  Secondly,  there  were  occlusions
caused by a crane deployed in the scene at the bottom of the
image.  So  far  video  discontinuities  or  occlusions  causing
broken  tracks  were  not  handled.  Their  number  and
consequences  were  however  limited  thanks  to  the
multiplicity of tracks attached to each target.

Figure 4. Uncorrected tracks for 50 seconds of video superimposed on the
google image of the chapel area.

Fig.  5  displays  the  trajectories  corrected  for  camera
motion  compensation.  Compared  to  the  first  test  case  we
notice  a  moderately  less  precise  correction,  which  is
explained by the fact that the sequence is twelve times longer

and that the imagery is of lower quality. Most static scene
points describe a small blob after correction and not a single
point. The correction is however effective and sufficient. The
corrected  moving  object  tracks  become  smoother,  as
expected.

Figure 5. Tracks of Fig. 4 after camera motion compensation.

With the help of the tracks displayed in Fig. 5, we can
partly interpret the played scenario. A vehicle stopped in the
middle of the image. Two persons left this vehicle. One went
towards the image bottom right, the other one went to the
trunk. A person left the chapel (carrying a canister) towards
the trunk. Another person crossed the road from left to right,
passing behind the vehicle. From the beginning till the end, a
second  vehicle  arrived  from  left,  overtook  the  stopped
vehicle and left through the upper side of the image. In the
meantime  a  person  was  loitering  on  the  left  side  of  the
square.

Globally, this second test case showed that the approach,
although developed for image videos of better resolution and
quality  could work on the images  of our application.  The
negative point in the current implementation is the loss of
tracks for some of the person feature points, mainly due to
the deformation of the outline from the top view. This could
be helped with a better illumination or by considering images
from a  thermal  sensor.  Also,  a  blob  detector  from image
differencing is a valid alternative to globally track the ever
changing structure of a moving person imaged from the top.

E. Trajectory analysis

For  the  second  test  case  we  applied  the  trajectory
classification suggested in section III on the corrected tracks
displayed in Fig. 5. The phantom tracks were detected with a
threshold value for erraticity equal to 2 pixels. Erratic tracks
are drawn in white in Fig. 6. This figure uses as background
the google map image of the chapel area and the magenta
color for large differences between the registered last frame
and the first frame (showing the moving vehicles and people,
if not hidden by the tracks). Erratic tracks are mainly located
in  areas  with  poor  texture  or  close  to  the  image  borders
where  tracking is more delicate.  Three vehicle trajectories
were also identified as erratic.  Tracking got confused after
the vehicles passed under a crane, just before turning left at
the bottom of the figure. Some vehicle feature points have
indeed been stuck by the crane edges. This huge deceleration
was reported by a high erraticity value.



For the remaining tracks, not related to static scene points
and  not  recognized  as  phantoms,  the  maximal  speed
parameter  was  measured  as  explained  in  section  III.  The
tracks with speed (in pixels per frame interval) above 0, 2, 4,
6, 8, 10, 12 and 14 were drawn respectively with colors dark
blue, light blue, cyan, green, yellow, orange, red and dark
red. With a ground resolution of 4.5 cm per pixel and a frame
interval of 0.2 second we arrive at the speed limits 0,  1.6,
3.2, 4.9, 6.5, 8.1, 9.7, 11.3 km/h and above.

Many very low speed trajectories (in dark or light blue)
correspond  to  another  kind  of  phantom  tracks,  with
sometimes  quite  large  extent.  Most  originate  from feature
points  located  near  the  image  borders  where  tracking  is
delicate. Others are feature points drifting along an edge and
describing a linear track. Tracks in the vicinity of the image
border should simply be omitted.

The remaining  tracks,  from light  blue  to  dark  red,  so
above 3.2 km/h, correspond to pedestrians and vehicles. The
2 vehicles went sufficiently fast for a while to have tracks
drawn in red or dark red, so above 10 km/h. It should be said
that  vehicles  were  driving  very  slowly  due  to  the  large
occupation of the area with people in exercise. The central
vehicle  was  just  stopping,  but  is  still  drawn with a  color
thanks to the speed definition with high percentile. One of
the pedestrians was running, stopping then coming back on
its way. His tracks are drawn in orange for an approximate
maximum speed of 8 km/h, although the average speed is
less. A high speed, even of limited duration is relevant to the
operator. Another person has green tracks testifying a normal
speed of 5 km/h. The person leaving the chapel with light
blue tracks was naturally slower as he was carrying a fuel
canister. A last person, loitering on the left of the area, has
dark blue tracks. It is interesting to see how discriminative
for this scenario was a clue as simple as the maximal speed.

The track pauses with a minimum of 5 seconds duration
were  detected  for  the  moving  target  tracks.  They  are
displayed  as  black  disks  in  Fig.  6.  They  successfully
designate the stopped vehicle,  the loitering man, the static
canister  (before  it  was  taken  away)  and  the  running  man
before he moved. Many pauses were detected in the vicinity
of  the  crane  since,  as  explained  before,  the  crane  edges
trapped vehicle tracks, making them static points. There are
also three black disks (on a green and on a yellow track)
which are due to parasitic tracks, moving next to a target for
a while and finally ‘abandoned’ in a fixed position.

V. CONCLUSIONS AND FUTURE WORK

We  have  presented  in  this  paper  the  extraction  of
compensated  trajectories  for  feature  points  attached  to
moving objects. For this, feature points were detected thanks
to  the  Shi  Tomasi  approach  and  tracked  with  the  Lucas
Kanade tracker of the openCV library. Camera motion was
compensated  for  thanks  to  static  scene  points  that  were
selected  from the  detected  tracks  which  exhibit  a  similar
displacement in image local areas. A homography modeled
the camera motion for each image, from the assumption that
a large part of the scene is planar.

The implemented tracking method was successful for our
urban crossing road test case, even in the presence of trees

and  houses.  For  the  test  case  on  early  warning  for  route
clearance  (part  of  the  EDA/IEDDET program),  we  could
classify  the  compensated  tracks  between  people  and
vehicles,  based  on a  maximal  speed  measure.  Border  and
erratic tracks had to be filtered out to avoid outliers. It was
even possible  with speed  to  discriminate  the  walking,  the
loitering,  the  carrying  and  the  running  individuals.  The
detection of  pauses  in moving target  tracks  has  shown its
potential for the automatic localization of possible suspicious
activities.

In the future,  we plan to address  the tracking issue of
occlusion  and  the  use  of  frame  differencing  for  target
confirmation or detection. The compensated trajectories will
have to be further analyzed to highlight specific behaviors
such  as  loitering,  stopping  or  making  a  U-turn.  Target
interactions  such  as  people  meeting,  group  splitting  or
individuals leaving a car are also of importance in order to
describe the key events of a video and ask an operator to
interpret the situation and flag real suspicious events. In this
way,  the  operator  load for  video  analysis  will  be reduced
from hours to a few seconds or minutes of critical  events
depending on the details of his mission.
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