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Abstract 

 
This paper presents a supervised classification 

method applied to building change detection in VHR 
aerial images. Multi-spectral stereo pairs of 0.3m 
resolution have been processed to derive elevation, 
vegetation index and colour features. These features 
help filling a 5-dimensional histogram whose bins 
finally hold the ratio of built-up and non built-up 
pixels, according to the vector database to be updated. 
This ratio is used as building confidence at each pixel 
to issue a building confidence map from which to 
perform building verification and detection. The 
implementation based on histogram is very simple to 
code, very fast in execution and compares in this 
application to a state-of-the-art supervised classifier. It 
has been tested for the Belgian National Mapping 
Agency (IGN) to identify areas with high probability of 
change in building layers. 
 

1. Introduction 
 

In our rapidly evolving world, up-to-date topo-
geographical information is of prime importance for 
applications such as navigation, environmental 
planning and risk assessment. Although information 
technology has been rapidly developing the topo-
geographical data production is only partially handled 
by automatic procedures [1]. Much more, the effort 
needed to update topo-geographical information may 
be as high as half the effort required to complete the 
first release [2]. No need to say that with the increasing 
desire to maintain information up-to-date, mapping 
agencies are looking for fast solutions. 

Change detection helps focusing the update work 
where modifications are most probable. Up to now, the 
update efforts are measured in man month since the 
procedures largely involve human intervention. The 
current trend is to consider image processing as a way 
to automatically detect candidates for changes: the 
operator can then concentrate on those candidates and 

avoid the time-consuming and error-prone task of 
scrutinizing large images. In some applications, a 
simple image difference can reveal most of the 
modified areas, but in aerial images the influences of 
the sun, vegetation and angle of view make the relation 
‘image to object’ very complex. 

To circumvent the complexity of images, one has to 
find robust and discriminative features on which to 
base change detection: robust to offer reliable values, 
as weakly dependent as possible on influences external 
to the objects of interest and discriminative in order to 
distinguish real targets from false alarms. Common 
imagery used by mapping agencies nowadays includes 
stereoscopic pairs of multi-spectral Very High 
Resolution images (ground resolution less than 0.5m). 
Such images can be processed to extract a Digital 
Surface Model from which to look for elevated 
structures; to apply colour analysis to isolate red or 
grey roofs; and to estimate from the near infrared band 
a vegetation index from which to localize non-
vegetation objects. The combination of those features 
to detect built-up areas brings robustness to the 
detection problem as the chance to miss targets for 
every feature dimension is low. However, the fusion of 
the features is not obvious as several measures with 
different ranges and importance have to be mixed to 
issue one decision value. 

The problem of deciding if a given image area is 
built-up or not relates to classification. In our case, the 
desired output is binary and the input is a vector 
consisting of 5 dimensions: 3 for colours, the local 
elevation and a vegetation index. As the database 
contains examples with known class, the problem 
reverts to supervised classification for which examples 
feed the learning phase to let the classification engine 
adapt its output. For the quality of results, the 
generalization of the classifier towards new (not-learnt) 
examples is crucial. In our application, database errors 
only concern a small percentage and relatively few new 
feature values appear. 

We propose to handle supervised classification with 
one (or several) histogram. This histogram holds for 



each feature vector (derived from the recent images) 
the ratio of built-up and non built-up pixels, according 
to the old database. A building confidence map is 
derived by replacing each pixel by the ratio associated 
to its feature vector. Change detection is achieved from 
the comparison of the database with the building 
confidence map. This approach is direct and supposes 
that the building types are sufficiently represented in 
the database, what is commonly the case for a given 
geographical area and a usual time span of a few years. 
A feature vector not encountered during learning will 
be classified as unknown and should call for human 
supervision. 

Our development fits with some of the trends of 
building change detection from aerial images [3]. It 
processes a pair of multispectral images to derive 3D 
and spectral cues. These are combined by a supervised 
classifier exploiting the a priori class belonging 
contained in the old database to detect inconsistencies 
like building disappearance, modification or 
appearance. The implementation is simple to code, runs 
very fast and compares to state-of-the-art supervised 
classification in our specific case. 

This paper is organized as follows. Section 2 
presents the evolution of our developments and the 
related image features used in this work. Section 3 
describes supervised classification with histogram and 
section 4 shows the change detection results obtained 
with that classifier. Section 5 concludes the paper. 

 
 

2. Feature Extraction 
 
2.1. Our progress in Change Detection for 
Buildings 
 

The work presented in this paper is the continuation 
of developments for building change detection areas 
started more than five years ago. This subsection 
presents a summary whose details can be found in 
mentioned papers. 

Geometry and Shadow 
Our first building detection study [4] showed that two 
pieces of information are highly important for building 
verification in panchromatic monoscopic images: the 
presence of linear segments and the presence of 
shadow that attests the prominence of buildings relative 
to their neighbourhood. 

Although the developed system correctly confirmed 
most individual or groups of buildings described by 
polygons in the database, it was not designed to find 
new constructions. The presented approach would have 

to look for areas with linear segments and shadow, 
resulting in numerous candidates and many false alarms 
as the constraints on building size, shape and 
orientation are weak. Even if it is practically grounded 
to keep human supervision in the process for new 
building detection, a solution with too many false 
alarms reduces the advantage of the automatic image 
processing part. 

Disparity 
A more elegant solution exists when considering the 
elevation clue obtained from stereo couples of images. 
In a first attempt, we considered the information 
contained in the disparity map which is the distance of 
corresponding points in the left and right images of a 
stereo pair. Disparity values are related to the distance 
of the object to the camera and thus reveal the relief for 
airborne or space-borne imagery. 
Looking for buildings in the disparity map consists in 
highlighting locally elevated objects [5]. Simply setting 
a threshold is not applicable as the disparity depends 
on the building height and terrain elevation. The terrain 
level (in disparity) has to be first subtracted to flatten 
the area so that building can be automatically detected 
by thresholding with a given disparity value. 

Geo-referencing 
Although disparity is sufficient to detect buildings, a 
more practical solution consists in reconstructing the 
scene with 3D values representing real coordinates [6]. 
This necessitates the transformation of the disparity 
value associated to each (x,y) image position into 
geographical coordinates (X,Y,Z). The quality of the 
results highly depends on the precision of the camera 
and flight parameters. The knowledge of ground points 
helps to achieve better geographical coordinates. 
Correct 3D reconstruction (“Digital Surface Model”) is 
also necessary if one wants to ortho-rectify the images, 
to bring them into a geometry corresponding to a top 
view (nadir) at every pixel and compatible with 
database coordinate systems. For this, each image point 
has to be shifted according to its image coordinates, 
camera position and scene elevation. 

3D Building Verification 
The knowledge of precise coordinates for every point 
in the scene is crucial to be able to position the 
database on the extracted 3D data. 3D Building 
verification then simply consists in checking that Z 
values (elevation) are higher in the building polygons. 
If the database has Z values, they can be numerically 
compared with some tolerance to account for 



imprecision and generalisation rules (like the building 
Z values measured at the gutter level in Belgium). 
For better efficiency, it is more appropriate to subtract 
a DTM (Digital Terrain Model) from the DSM to 
derive a local elevation map. The DTM may be 
obtained from topo-geographic sources or derived from 
the DSM by a procedure keeping local low-level values 
[6]. Building verification is then achieved by the 
threshold of the local elevation map with a constant Z 
value (2 or 3m, for instance). 
Although the approach is clearly supported by 
experimental results, some buildings were incorrectly 
verified, mainly due to their limited size or height and  
wrong disparity estimation. Most errors concerned 
garden huts (about 10 m2, 2.5 m high) and buildings 
hardly visible due to a lack of contrast resulting in a 
poor matching for disparity estimation (and hence 3D). 
Mention that the resolution in Z is in our case on the 
order of 1 m, so that a threshold at 2.5m generates 
noise in the local elevation map. 

3D Building Detection 
The detection of new buildings relies on the threshold 
of the local elevation map. However, for an automatic 
solution, new building candidates have to be localised 
and false targets should be filtered out. In many 
situations, human supervision is the most appropriate 
way to deliver a practical ‘semi-automatic’ solution. 

The difficulty with automation is the false alarm 
rate. Usually numerous trees present size and height 
similar to buildings and their shape roundness is not an 
easy criterion on which to base rejection due to the 
limited geometrical sharpness of the DSM or the 
variety of building shapes. This fact calls for a multi-
modal approach including colour and vegetation index. 
 
2.2. Multi-modal feature extraction 
 
A classical way to overcome the limitation of 
verification or detection performance with one criterion 
consists in fusing several modalities [7, 8]. In our case, 
we dispose of a stereo pair of multi-spectral images. 
These are used to derive the elevation map, the colour 
and vegetation index values. 

3D 
The 3D modality has been presented here above and 
exploits the local elevation map obtained by the 
subtraction of the DSM by the DTM. The DTM was 
derived from the DSM by replacing each DSM value 
with the percentile 20 of the histogram of DSM values 
contained in a 50x50m square centred on the 
considered point. The map DSM-DTM (Fig. 1) clearly 

highlights elevated objects (building and vegetation) 
but some points have an incorrect value. Wrong 
estimations are present in the DSM due to common 
errors in image matching (occlusion, shadow, repetitive 
patterns) and in the DTM due to the principle of the 
percentile 20 which is not valid if there are not enough 
ground points in the 50x50m square. 

 

Fig. 1. Part of the image DSM-DTM (0.5m) of the Leuven 
suburb 

Colour 
The colour modality is handled by considering the 
“Lab” colour space representation [9] computed from 
the R, G and B channels. RGB values are indeed highly 
correlated by intensity. L, a and b represent 
respectively the intensity, the red-green factor and the 
yellow-blue factor.  

We implemented the following rough approximation 
of the Lab conversion which is less computationally 
expensive: 
 

L = (r+g+b)/3;    a = r-g;    b = g-b  (1) 
 

Fig. 2 displays in RGB about 5% of the area used 
for test. It is a reference to interpret the other figures. 



 

Fig. 2. Part of the ortho-rectified image (0.5m) of the Leuven 
suburb 

Vegetation Index 
The Normalized Difference Vegetation Index is the last 
modality included in our multi-modal classification 
engine. It is computed at each pixel by the ratio: 
 

NDVI = (NIR-R)/(NIR+R)  (2) 
 
with NIR and R being respectively the near infrared 
and the red image channels. The value is high (bright) 
for areas with vegetation. As visible in Fig. 3, buildings 
and roads appear dark.  

Geometry 
A modality based on geometry was not developed. 
Buildings generally appear as blobs with quite sharp 
and linear edges. It should be possible to integrate this 
information but in practice the size and shape vary 
considerably and the resolution at 0.5m is still 
limitative to detect the linear aspect of small building 
outlines which are precisely the ones to raise 
difficulties in other modalities. 

 

Fig. 3. NDVI for the partial image considered (suburb of 
Leuven) 

 

3. Classification with Histogram 
 
The idea of multi-modality is to combine different 
sources of information that should collectively improve 
classification. In the present case, we dispose of 
examples from the database to be updated that can help 
learning the modality values encountered in and out 
building areas. The classification into building or non 
building will be obtained from a generalisation of the 
examples presented during the learning phase hence the 
name ‘supervised’ classification. 

Mention that the database may be fully exploited for 
learning the classifier. For research purposes, one can 
limit the part of the database used for learning and use 
the rest for testing the ability of verification. In 
operational conditions, there is little ground for not 
using the whole database for learning so that the chance 
that building types are not represented is at the lowest 
level. 



Histogram Classifier 
Our classifier uses histogram to collect statistics about 
modality values from building and non-building 
examples. Modality values can represent single or 
multiple vector components. In our application dealing 
with 5 dimensions (z, L, a, b, ndvi), two cases were 
considered: a 5-D histogram and the combination of 
histograms of lower dimensions. Let us describe how a 
single histogram classifier works. 

The learning phase of our classifier consists in 
filling the histogram with building and non-building 
examples of feature vectors. We created a mask with 
the building polygons of the database. For each pixel in 
the building mask, we increment the histogram bin 
corresponding to the feature vector as ‘in’ if the pixel is 
in a building or ‘out’ if not. At the end of the process, 
we have a number of ‘in’ and ‘out’ occurrences for 
each feature vector value which are then divided 
respectively by the total number of ‘in’ and ‘out’ pixels 
so that histogram bins now contain the frequency ‘inP’ 
for being ‘in’ and ‘outP’ for being ‘out’. The 
confidence (in [0..1]) for a feature vector to represent a 
building pixel is computed as the ratio of ‘inP’ divided 
by the sum of frequencies (‘inP’+’outP’). Feature 
values with no occurrence receive a confidence value 
of -1 to let them be distinguished easily. 

The evaluation of the ratio of in and out pixels is 
more reliable if sufficient points are considered. The 
original dynamic range for a modality is usually too 
large and results are less noisy when the number of 
histogram bins is reduced. However, with too few bins, 
the discrimination power decreases. We used 32 bins 
for z and L dimensions and 15 bins for a, b, and NDVI. 

The advantages of this histogram implementation 
for supervised classification lie in the simplicity of 
code, the reduced number of parameters (number of 
intervals per modality), the low computational load and 
the possibility to keep low memory requirements by 
cutting the problem into several histogram classifiers. 
However, a more advanced technique like vector 
quantization could address the problem of optimal 
values and number of bins, especially if the memory 
constraint is strong [10]. 

Combining Classifiers 
There are two approaches to realise multi-modal 
histogram classification. 

In the first case, the whole feature space is handled 
by a single histogram. This leads to a discriminative 
solution which can take all feature combinations into 
account. However, the histogram is likely to have 
sparse areas and the generalisation to unseen cases may 
be weak. The histogram size might be very large as it 

results from the product of the number of intervals for 
each modality. 

The second approach considers the separation of the 
multi-modal problem into sub-classifiers. During 
development, we tested each modality separately and 
analysed their relative importance. We designed one 3-
D histogram for colour and two 1-D histograms for 3D 
and NDVI. Then we tested their combination with a 
fusion of the individual histogram confidences, what 
was realised by a classical fusion rule (sum, product, 
min, max) although another histogram classifier could 
have been used. This ‘divide-and-conquer’ approach 
provides more control as individual classifiers can be 
tailored individually. However, feature vector values 
may loose their specificity once vector components are 
considered separately. For instance, red roofs are very 
specific and give a high confidence for buildings in the 
‘Lab’-histogram. If a 1-D histogram was used for ‘a’, 
the bins populated by red roofs would also hold other 
colours with the same ‘a’ value, probably outside 
buildings, reducing the confidence for building. 

Classification by histograms is very fast and easy to 
implement or analyse. The results of course depend on 
the quality of the learning samples. These should at 
best cover the different cases to be encountered. As the 
solution suggests the intervention of an operator, 
additional examples may be pointed by him beside the 
ones collected automatically from the database. This is 
particularly useful for the histogram areas which were 
not classified (empty bins). 
 
 

4. Change Detection Results 
 
In the context of our research, change detection 
concerns the automatic detection of inconsistencies 
between the database to be updated and recent imagery. 
The changes help the project manager to give priorities 
to the most demanding areas according to the available 
human and budget resources. Change locations will 
also guide the operator in focusing on areas were major 
changes occurred and where operational tasks have to 
be undertaken (polygon suppression, creation or 
modification). 

According to the type of change, two different 
situations arise: building verification if the database 
polygons are checked for modification, or building 
detection if new buildings are looked for in the image. 
Building verification is easier than detection as the 
database indicates where to search in the image.  



Building Confidence Map 
The input data for building change detection consist of 
a pair of aerial images (0.3m resolution) and the 
building layer of the topo-geographic database. 

A Digital Surface Model was extracted from the 
stereoscopic pair of multispectral images thanks to a 
proprietary development using several correlation 
windows of different sizes and a relaxation procedure 
based on Markov Random Field [6]. With this DSM, 
the left image was ortho-rectified (at 0.5m) so that the 
vector database could be correctly superimposed. The 
vegetation index and Lab-like map were derived from 
the Near Infrared, R, G and B channels. 

The test zone is a 2km x 2km square area around 
Leuven in Belgium and contains a large variety of 
objects: motorway, railways, a lake, urban and 
agricultural zones. It is representative of the type of 
landscape in Belgium, except the hilly south and dense 
urban areas. 

The confidence map obtained by the 5-D histogram 
classifier (3D, L, a, b, NDVI) is created in less than 5 
seconds for a 4000x4000 image on a 2.33 Ghz 
computer. A part of the map is displayed in Fig. 4 with 
the database superimposed as dotted polygons. 

Building Verification 
We observe in Fig. 4 that the confidence map is 
consistent with the outlines of the building polygons of 
the database. Most inconsistencies concern very small 
buildings (less than 20 m2, like garden huts) or errors in 
shadow areas near vegetation. 

To estimate the building verification rate, each 
polygon of the building database was scored with the 
average of the confidence values in the polygon. Table 
1 lists the number of buildings which have a score 
lower than the threshold given in abscissa (false 
rejection). Mention that a limit in building area to 20 
m2 has been set to avoid most garden huts to be part of 
the evaluation since their small size and height are the 
cause of many errors in feature evaluation and 
classification.  

To find a confidence threshold for building 
acceptance, we looked for errors in the database. In the 
whole 2x2 km test area, we found 15 polygons which 
have no corresponding structure in the image. These 
are called ‘Phantoms’ in Table 1 which lists their 
number with a score inferior to the threshold (false 
acceptance). 

 

Fig. 4: Part of the Building Confidence Map from 5-D 
classification.  

 
Table 1. Polygon scores for buildings and phantoms 
(Min area is 20 m2) 

Scores*100 0 10 15 20 25 30 50 100 

# Buildings 0 3 10 17 31 42 106 1045 

# Phantoms 15 9 5 2 1 0 0 0 

 
In an operational test, one would set the threshold to 

highlight weakly supported buildings (like the 
Phantoms) while keeping the number of highlighted 
buildings low to minimize false alarms. With a value of 
0.21, only one phantom would be missed while 20 real 
buildings (2%) would be incorrectly highlighted. This 
is valuable as 98% of the polygons would be released 
from operator verification. However, the reality is more 
complex since a few buildings are partially changed, 
what is hardly detectable with the current 
implementation. 

If additional features had to be combined, the 
histogram memory requirement would become 
prohibitive. To analyse the influence of handling the 
classification with several sub-classifiers, we 



considered a 4-D histogram (3D and Lab-like features) 
and a 1-D histogram (NDVI). The two sub-classifiers 
were combined with a product. Results are not as good 
but consistent. However if we consider the product of 
the 3 classifiers obtained with one modality left out 
(Lab+3D, Lab+NDVI, 3D+NDVI), results are similar. 

We also tested the change detection ability in the 
case 90% of the database was randomly chosen for 
learning. Results were similar, supporting the 
conclusion that the quality of the results was not fooled 
by the learning of isolated cases (with poor 
generalisation) but that the major buildings 
characteristics are well captured. 

Building Detection 
Detecting new buildings requires localising candidate 
zones in the building confidence map. So far, this 
localisation has not been automated due to the large 
number of false alarms. A quality evaluation based on 
observation was undertaken to identify the 
discrepancies between the database and the confidence 
map. These consist of several new buildings, very few 
destroyed buildings and many false alarms arising from 
small structures or shadow areas. Refer to Fig. 5 for a 
few annotated examples, where automatic false 
colouring based on the database and confidence map 
highlights the different cases. Green areas correspond 
to confident pixels within a building polygon (no 
change). Red pixels have a high built-up confidence out 
of a polygon and should correspond to new (N) or 
extended (M) buildings. They are sometimes located in 
shadow areas ‘S’ (false alarms). Blue regions have low 
built-up confidence in a polygon and should 
correspond to a destroyed building (D) or phantom 
polygon). 

False alarms mainly originate from the limited 
accuracy of the local elevation map and the poor 
contrast in shadow areas. The DSM has a resolution of 
about 1m in Z and the match with DTM values is 
imperfect, so that the local elevation uncertainty  may 
compete with the lowest structures (e.g. 2.5 m). The 
Normalized Digital Vegetation Index suffers from a 
wrong estimation in the shadow areas where both 
infrared and red components have low intensities. We 
hope to compensate partially for this thanks to the 
additional bits (8-11) provided by most earth 
observation sensors. 
 

 

Figure 5: Part of the Building Confidence Map with 
automatic false coloring: GREEN: confident in DB, 
RED=confident out of BD, BLUE=not confident in DB. A 
few examples of New (N), Modified (M) and Disappeared 
(D) buildings, and Shadow (S) areas. 

Feature Relative Importance 
When looking at individual feature maps or individual 
classifier results, we observe that the local elevation 
brings the highest discrimination power, with a rather 
good localization precision. Then follows the 
vegetation index which clearly helps rejecting 
vegetation zones, except in shadow areas. The colour 
information is also very useful but its contribution is 
less predictable. Red roof is a clear supportive 
example, as this hue is unlikely to be present in other 
objects, but red containers can be perfect imposters. 

State-of-the-art Classifier 
In order to evaluate the quality of our feature vector for 
building classification and to position the histogram 
approach, we selected Support Vector Machine as a 
reference classifier. We used a SVM library [10] and 
we presented the same feature vector with learning 
thanks to the building map of the database. Using the 
prediction value (not the binary output) we obtain a 
confidence map similar to Fig. 4. The quantitative 



results are slightly worse than Table 1 but as learning 
and classification are more than 1000 times slower than 
with our approach, the SVM parameters were not fully 
tuned. 
 

5. Conclusions 
 
This paper has presented the change detection of built-
up areas thanks to multi-modal features composed of 
elevation, colour and vegetation index values. The 
information is extracted from a stereo couple of multi-
spectral aerial images at 0.3m resolution owned by the 
Belgian National Mapping Agency (IGN). 

The approach consists in learning pixel-wise the 
building confidence from examples contained in the 
database. Computing the relative importance of 
building and non-building pixels for the feature vector 
composed of the multi-modal information is made by 
histogram. This way of implementing supervised 
classification avoids tricky parameter setting, is simple 
to code, runs very fast and is successful for our 
application. 

The generalisation ability of the classifier necessary 
to detect new buildings is improved thanks to the 
reduction of the modality intervals. This represents the 
only parameters of the histogram classifier but in 
practice a value between 15 and 30 seem adequate. In 
the case too many dimensions make the histogram 
approach unpractical due to memory requirements, the 
problem can be divided into sub-classifiers but the 
solution might not to be optimal if we loose the synergy 
of some modalities. 

The execution time is particularly fast: less than 5 
seconds for a 4000x4000 image on a 2.33 GHz 
computer. 

We intend to refine change detection by improving 
the extraction of individual features as suggested above 
for the local elevation and vegetation index and a 
special treatment of shadow areas. Concerning 
histogram classifiers, we would like to setup an 
automatic procedure for an optimisation of the 
histogram intervals of the modality value ranges. To a 
larger extent, we plan to redirect research towards 
object processing to better capture building 
modification and propose building vectors. 
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