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Abstract avoid the time-consuming and error-prone task of
scrutinizing large images. In some applications, a

This paper presents a supervised classification Simple image difference can reveal most of the
method applied to building change detection in VHR modified areas, but in aerial images the influenaes
aerial images. Multi-spectral stereo pairs of 0.3m the sun, vegetation and angle of view make theioela
resolution have been processed to derive elevation, image to object’ very complex.

vegetation index and colour features. These feature  TO circumvent the complexity of images, one has to
help filling a 5-dimensional histogram whose bins find robust and discriminative features on which to

finally hold the ratio of built-up and non built-up base change detection: robust to offer reliableiesl
pixels, according to the vector database to be tgla  as weakly dependent as possible on influencesretter
This ratio is used as building confidence at eabtelp 0 the objects of interest and discriminative idesrto

to issue a building confidence map from which to distinguish real targets from false alarms. Common
perform building verification and detection. The imagery used by mapping agencies nowadays includes
implementation based on histogram is very simple toStereoscopic pairs of multi-spectral Very High
code, very fast in execution and compares in this Resolution images (ground resolution less than .5m
application to a state-of-the-art supervised cléiesi It Such images can be processed to extract a Digital
has been tested for the Be'gian National Mapp|ng Surface Model from which to look for elevated
Agency (IGN) to identify areas with high probalilaf ~ sStructures; to apply colour analysis to isolate ced

change in building layers. grey roofs; and to estimate from the near infrdvadd
a vegetation index from which to localize non-
1. Introduction vegetation objects. The combination of those festur

to detect built-up areas brings robustness to the

detection problem as the chance to miss targets for

geographical information is of prime importance for every feature_dlmen5|on_|s low. However, the fussin .
| the features is not obvious as several measurds wit

applications such as navigation, environmenta dif ¢ qi " h 0 b ived t
planning and risk assessment. Although information difrerent ranges and Importance have 1o be mixed 1o

: . decision value.
technology has been rapidly developing the topo- ISSU€ one A . . :
geographical data production is only partially Hadd _The problem of deciding 'f. a given image area 1s
by automatic procedures [1]. Much more, the effort bwl'g-up or not re_late§ to cla35|f|cat|or_1. In ouarse, the
needed to update topo-geographical information maydesw_ed_ output IS b'”afy a.nd the input is a vector
be as high as half the effort required to comptate consisting of 5 dimensions: 3 for colours, the loca

first release [2]. No need to say that with theéasing elevation and a vegetation index. As the database

desire to maintain information up-to-date, mapping contatm?[ exampl_edeTh kPOV\tm cflass,h_thhe plr::Iem
agencies are looking for fast solutions. reverts to supervised classitication for Which eg

Change detection helps focusing the update Workfeed th_e learning phase to let the_classificatingirm
where modifications are most probable. Up to ntw, t adapt |_ts _output. For th_e quality of results, the
update efforts are measured in man month since thegenerallzapon of _the classifier tqwa_rds new (watrht)
procedures largely involve human intervention. The examples is crucial. In our application, da_tabasere
current trend is to consider image processing aaya only concern a small percentage and relativelyriew
to automatically detect candidates for changes: thefeature values appear.

operator can then concentrate on those candidates a We propose to handle super\_/lseql classification with
one (or several) histogram. This histogram holds fo

In our rapidly evolving world, up-to-date topo-



each feature vector (derived from the recent images to look for areas with linear segments and shadow,
the ratio of built-up and non built-up pixels, aotiog resulting in numerous candidates and many falgenala

to the old database. A building confidence map is as the constraints on building size, shape and
derived by replacing each pixel by the ratio assed orientation are weak. Even if it is practically gnaled

to its feature vector. Change detection is achidrea to keep human supervision in the process for new
the comparison of the database with the building building detection, a solution with too many false
confidence map. This approach is direct and sugpose alarms reduces the advantage of the automatic image
that the building types are sufficiently represdnie processing part.

the database, what is commonly the case for a given

geographical area and a usual time span of a fevsye
A feature vector not encountered during learninty wi
be classified as unknown and should call for human
supervision.

Our development fits with some of the trends of
building change detection from aerial images [3]. |
processes a pair of multispectral images to de3ve
and spectral cues. These are combined by a supeérvis
classifier exploiting the a priori class belonging
contained in the old database to detect incongiisn
like building disappearance, modification or
appearance. The implementation is simple to cades r
very fast and compares to state-of-the-art supsnlvis

classification in our specific case. level (in disparity) has to be first subtractedfltten

This paper is organized as follows. Section 2 yhe 5rea so that building can be automaticallydete
presents the evolution of our developments and theby thresholding with a given disparity value.
related image features used in this work. Section 3

describes supervised classification with histogeard

section 4 shows the change detection results @atain G€O-Teferencing

with that classifier. Section 5 concludes the paper Although disparity is sufficient to detect buildsiga
more practical solution consists in reconstructihg

scene with 3D values representing real coordirféles

This necessitates the transformation of the digpari

value associated to each (x,y) image position into

geographical coordinates (X,Y,Z). The quality oé th

i results highly depends on the precision of the came

Buildings and flight parameters. The knowledge of ground tsoin
o ) ) _ helps to achieve better geographical coordinates.

The work presented in this paper is the continmatio correct 3D reconstruction (“Digital Surface Modei)
of developments for _bU|Id|ng change de_tectlon areasg|so necessary if one wants to ortho-rectify thages,
started more than five years ago. This subsectm_nto bring them into a geometry corresponding to @ to
presents a summary whose details can be found in gy (nadir) at every pixel and compatible with

Disparity

A more elegant solution exists when considering the
elevation clue obtained from stereo couples of isag
In a first attempt, we considered the information
contained in the disparity map which is the distant
corresponding points in the left and right imagés o
stereo pair. Disparity values are related to tistadce

of the object to the camera and thus reveal thef fer
airborne or space-borne imagery.

Looking for buildings in the disparity map consigts
highlighting locally elevated objects [5]. Simplgtsng

a threshold is not applicable as the disparity ddpe
on the building height and terrain elevation. Tédin

2. Featur e Extraction

2.1. Our progress in Change Detection for

mentioned papers. database coordinate systems. For this, each inwige p
has to be shifted according to its image coord®ate
Geometry and Shadow camera position and scene elevation.

Our first building detection study [4] showed thab
pieces of information are highly important for faliflg 3D Building Verification

verification in panchromatic monoscopic images: the The knowledge of precise coordinates for every poin
presence of linear segments and the presence Ofy the scene is crucial to be able to position the
shadow that attests the prominence of buildingstixel database on the extracted 3D data. 3D Building
to their neighbourhood. _ verification then simply consists in checking that
Although the developed system correctly confirmed ygjyes (elevation) are higher in the building poiys.
most individual or groups of buildings described by |t the database has Z values, they can be numigrical

polygons in the database, it was not designednid fi compared with some tolerance to account for
new constructions. The presented approach would hav



imprecision and generalisation rules (like the dint highlights elevated objects (building and vegetgtio

Z values measured at the gutter level in Belgium). but some points have an incorrect value. Wrong
For better efficiency, it is more appropriate tdact estimations are present in the DSM due to common
a DTM (Digital Terrain Model) from the DSM to errors in image matching (occlusion, shadow, répeti
derive alocal elevation map The DTM may be  patterns) and in the DTM due to the principle of th
obtained from topo-geographic sources or derivethfr  percentile 20 which is not valid if there are nnbegh

the DSM by a procedure keeping local low-level ealu  ground points in the 50x50m square.

[6]. Building verification is then achieved by the
threshold of the local elevation map with a conisfan
value (2 or 3m, for instance).

Although the approach is clearly supported by
experimental results, some buildings were incolyect
verified, mainly due to their limited size or heigind
wrong disparity estimation. Most errors concerned
garden huts (about 10%m2.5 m high) and buildings
hardly visible due to a lack of contrast resultinga
poor matching for disparity estimation (and henb?.3
Mention that the resolution in Z is in our casetba
order of 1 m, so that a threshold at 2.5m generates
noise in the local elevation map.

3D Building Detection
The detection of new buildings relies on the thodgh
of the local elevation map. However, for an autdéenat
solution, new building candidates have to be Icedi
and false targets should be filtered out. In many
situations, human supervision is the most apprtgria
way to deliver a practical ‘semi-automatic’ solutio

The difficulty with automation is the false alarm
rate. Usually numerous trees present size and theigh
similar to buildings and their shape roundnessisam
easy criterion on which to base rejection due ® th
limited geometrical sharpness of the DSM or the
variety of building shapes. This fact calls for altin
modal approach including colour and vegetationsinde ;ijgb-u%b Part of the image DSM-DTM (0.5m) of the ken

2.2. Multi-modal feature extraction

A classical way to overcome the limitation of Colour

verification or detection performance with oneemiibn The colour modality is handled by considering the
consists in fusing several modalities [7, 8]. Im oase,  “Lab” colour space representation [9] computed from
we dispose of a stereo pair of multi-spectral insage the R, G and B channels. RGB values are indeedyhigh
These are used to derive the elevation map, treucol correlated by intensity.L, a and b represent

and vegetation index values. respectively the intensity, the red-green factat tre
yellow-blue factor.

3D We implemented the following rough approximation

The 3D modality has been presented here above anéaf the Lab conversion which is less computationally

exploits the local elevation map obtained by the SXPENSIVE:

subtraction of the DSM by the DTM. The DTM was
derived from the DSM by replacing each DSM value
with the percentile 20 of the histogram of DSM \esu
contained in a 50x50m square centred on the
considered point. The map DSM-DTM (Fig. 1) clearly

L = (r+g+b)/3; a=r-g; b=gb Q)

Fig. 2 displays in RGB about 5% of the area used
for test. It is a reference to interpret the offigures.



Fig. 2. Part of the ortho-rectified image (0.5m}lud Leuven
suburb

Vegetation I ndex

The Normalized Difference Vegetation Index is thst|

modality included in our multi-modal classification

engine. It is computed at each pixel by the ratio:
NDVI = (NIR-R)/(NIR+R) 2

with NIR and R being respectively the near infrared

and the red image channels. The value is highkbrig

for areas with vegetation. As visible in Fig. 3jl8ings
and roads appear dark.

Geometry

A modality based on geometry was not developed.
Buildings generally appear as blobs with quite ghar
and linear edges. It should be possible to integttat
information but in practice the size and shape vary
considerably and the resolution at 0.5m is still
limitative to detect the linear aspect of smallltinig
outlines which are precisely the ones to raise
difficulties in other modalities.

Fig. 3. NDVI for the partial image considered (stbuwf
Leuven)

3. Classification with Histogram

The idea of multi-modality is to combine different
sources of information that should collectively noye
classification. In the present case, we dispose of
examples from the database to be updated thatedan h
learning the modality values encountered in and out
building areas. The classification into building ran
building will be obtained from a generalisationtbé
examples presented during the learning phase tikace
name ‘supervised’ classification.

Mention that the database may be fully exploitad fo
learning the classifier. For research purposes,came
limit the part of the database used for learning ase
the rest for testing the ability of verificationn |
operational conditions, there is little ground foot
using the whole database for learning so that hia@oe
that building types are not represented is at dhest
level.



Histogram Classifier results from the product of the number of intervais

Our classifier uses histogram to collect statistibsut each modality.

modality values from building and non-building The second approach considers the separation of the

examples. Modality values can represent single ormulti-modal problem into sub-classifiers. During

multiple vector components. In our application denl  development, we tested each modality separately and

with 5 dimensions (z, L, a, b, ndvi), two caseseaver analysed their relative importance. We designed3ne

considered: a 5-D histogram and the combination of D histogram for colour and two 1-D histograms f&r 3

histograms of lower dimensions. Let us describe how and NDVI. Then we tested their combination with a

single histogram classifier works. fusion of the individual histogram confidences, wha
The learning phase of our classifier consists in was realised by a classical fusion rule (sum, pcgdu

filling the histogram with building and non-buildin  min, max) although another histogram classifierldou

examples of feature vectors. We created a mask withhave been used. This ‘divide-and-conquer’ approach

the building polygons of the database. For eachl fix provides more control as individual classifiers dan

the building mask, we increment the histogram bin tailored individually. However, feature vector vedu

corresponding to the feature vector as ‘in’ if pieel is may loose their specificity once vector componemés

in a building or ‘out’ if not. At the end of the gress, considered separately. For instance, red roofyvemge

we have a number of ‘in” and ‘out’ occurrences for specific and give a high confidence for buildingshe

each feature vector value which are then divided ‘Lab’-histogram. If a 1-D histogram was used fof, ‘a

respectively by the total number of ‘in’ and ‘opixels the bins populated by red roofs would also holcenth

so that histogram bins now contain the frequency™i colours with the same ‘a’ value, probably outside
for being ‘in" and ‘outP’ for being ‘out. The  buildings, reducing the confidence for building.
confidence (in [0..1]) for a feature vector to regent a Classification by histograms is very fast and dgasy
building pixel is computed as the ratio of ‘inPvidied implement or analyse. The results of course depend

by the sum of frequencies (‘inP’+'outP’). Feature the quality of the learning samples. These shotld a
values with no occurrence receive a confidenceevalu best cover the different cases to be encountersdhé\

of -1 to let them be distinguished easily. solution suggests the intervention of an operator,
The evaluation of the ratio of in and out pixels is additional examples may be pointed by him beside th
more reliable if sufficient points are consider&dhe ones collected automatically from the databases Ehi

original dynamic range for a modality is usuallyoto particularly useful for the histogram areas whiokrev
large and results are less noisy when the number oot classified (empty bins).
histogram bins is reduced. However, with too femsbi
the discrimination power decreases. We used 32 bins
for z and L dimensions and 15 bins for a, b, and/ND 4, Change Detection Results
The advantages of this histogram implementation

for supervised classification lie in the simplicigf In the context of our research, change detection
code, the reduced number of parameters (number ofoncerns the automatic detection of inconsistencies
intervals per modality), the low computational laa®tl  petween the database to be updated and recentrimage
the possibility to keep low memory requirements by The changes help the project manager to give figsri
cutting the problem into several histogram classsfi  to the most demanding areas according to the d¥aila
However, a more advanced technique like vector nyman and budget resources. Change locations will
quantization could address the problem of optimal aiso guide the operator in focusing on areas weajem
values and number of bins, especially if the memory changes occurred and where operational tasks lave t

constraint is strong [10]. be undertaken (polygon suppression, creation or
modification).

Combining Classifiers According to the type of change, two different

There are two approaches to realise multi-modal Situations arisebuilding verification if the database

histogram classification. polygons are checked for modification, building

In the first case, the whole feature space is lmhdl detectionif new buildings are looked for in the image.
by a single histogram. This leads to a discrimimati  Building verification is easier than detection & t
solution which can take all feature combination®in database indicates where to search in the image.
account. However, the histogram is likely to have
sparse areas and the generalisation to unseenrnages
be weak. The histogram size might be very largé as



Building Confidence M ap
The input data for building change detection cdruis

a pair of aerial images (0.3m resolution) and the . 8"

building layer of the topo-geographic database.

A Digital Surface Model was extracted from the .

stereoscopic pair of multispectral images thanks to
proprietary development using several correlation
windows of different sizes and a relaxation procedu
based on Markov Random Field [6]. With this DSM,
the left image was ortho-rectified (at 0.5m) sot tinee

vector database could be correctly superimposed. Th %
vegetation index and Lab-like map were derived from =¥

the Near Infrared, R, G and B channels.

The test zone is a 2km x 2km square area around

Leuven in Belgium and contains a large variety of
objects: motorway, railways, a lake, urban and
agricultural zones. It is representative of theetyqf
landscape in Belgium, except the hilly south andsde
urban areas.

The confidence map obtained by the 5-D histogram
classifier (3D, L, a, b, NDVI) is created in le$ah 5

seconds for a 4000x4000 image on a 2.33 Ghz

computer. A part of the map is displayed in Figvith
the database superimposed as dotted polygons.

Building Verification

We observe in Fig. 4 that the confidence map is
consistent with the outlines of the building polpgaf

the database. Most inconsistencies concern veryl sma
buildings (less than 204xlike garden huts) or errors in
shadow areas near vegetation.

To estimate the building verification rate, each
polygon of the building database was scored with th
average of the confidence values in the polygomlera
1 lists the number of buildings which have a score
lower than the threshold given in abscissa (false
rejection). Mention that a limit in building area 20
m2 has been set to avoid most garden huts to bh@fpar
the evaluation since their small size and heigbtthe
cause of many errors in feature evaluation and
classification.

To find a confidence threshold for building
acceptance, we looked for errors in the databasthel
whole 2x2 km test area, we found 15 polygons which

iy

¥

Fig. 4: Part of the Building Confidence
classification.

Map fromD5-

Table 1. Polygon scores for buildings and phantoms
Min area is 20 m2)

Scores*100| O | 10 | 15| 20 | 25 | 30 | 50 | 100
# Buildings| 0 3 | 10| 17| 31| 42 108045
# Phantoms 15 9 5 2 1 0 0 0

In an operational test, one would set the threstwld
highlight weakly supported buildings (like the
Phantoms) while keeping the number of highlighted
buildings low to minimize false alarms. With a valof
0.21, only one phantom would be missed while 20 rea
buildings (2%) would be incorrectly highlighted. i$h

have no corresponding structure in the image. Theses valuable as 98% of the polygons would be relkase

are called ‘Phantoms’ in Table 1 which lists their
number with a score inferior to the threshold @als
acceptance).

from operator verification. However, the realityni®re
complex since a few buildings are partially changed
what is hardly detectable with the current
implementation.

If additional features had to be combined, the
histogram memory requirement would become
prohibitive. To analyse the influence of handlifg t
classification with several sub-classifiers, we



considered a 4-D histogram (3D and Lab-like feature
and a 1-D histogram (NDVI). The two sub-classifiers
were combined with a product. Results are not aslgo
but consistent. However if we consider the prodfct
the 3 classifiers obtained with one modality leitt o
(Lab+3D, Lab+NDVI, 3D+NDVI), results are similar.
We also tested the change detection ability in the
case 90% of the database was randomly chosen fofj
learning. Results were similar, supporting the .
conclusion that the quality of the results wasfooted
by the learning of isolated cases (with poor |
generalisation) but that the major buildings &
characteristics are well captured.

Building Detection
Detecting new buildings requires localising cantiéda
zones in the building confidence map. So far, this
localisation has not been automated due to theslarg
number of false alarms. A quality evaluation basad
observation was undertaken to identify the |
discrepancies between the database and the cordiden |
map. These consist of several new buildings, vewy f |
destroyed buildings and many false alarms arigiogn f
small structures or shadow areas. Refer to Figr&f
few annotated examples, where automatic false
colouring based on the database and confidence mafrigure 5: Part of the Building Confidence Map with
highlights the different cases. Green areas coorebp automatic false coloring: GREEN: confident in DB,
to confident pixels within a building polygon (no RED=confident out of BD, BLUE=not confident.in DB
change). Red pixels have a high built-up confidenge €W €xamples of New (N), Modified (M) and Disapper
of a polygon and should correspond to new (N) or (D) buildings, and Shadow (S) areas.
extended (M) buildings. They are sometimes located
shadow areas ‘'S’ (false alarms). Blue regions hawe
built-up confidence in a polygon and should FeatureRelative lmportance
correspond to a destroyed building (D) or phantom When looking at individual feature maps or indivaiu
polygon). classifier results, we observe that the local dlena
False alarms mainly originate from the limited brings the highest discrimination power, with aheat
accuracy of the local elevation map and the poorgood localization precision. Then follows the
contrast in shadow areas. The DSM has a resolofion Vegetation index which clearly helps rejecting
about 1m in Z and the match with DTM values is vegetation zones, except in shadow areas. The rcolou
imperfect, so that the local elevation uncertaintay information is also very useful but its contributiés
compete with the lowest structures (e.g. 2.5 m)e Th less predictable. Red roof is a clear supportive
Normalized Digital Vegetation Index suffers from a example, as this hue is unlikely to be presenttien
wrong estimation in the shadow areas where bothobjects, but red containers can be perfect imp@ster
infrared and red components have low intensities. W
hope to compensate partially for this thanks to the gigte-of-the-art Classifier

additional  bits (8-11) provided by most earth |n order to evaluate the quality of our featuretueéor

observation sensors. building classification and to position the histagr
approach, we selected Support Vector Machine as a
reference classifier. We used a SVM library [10f an
we presented the same feature vector with learning
thanks to the building map of the database. Udieg t
prediction value (not the binary output) we obtain
confidence map similar to Fig. 4. The quantitative




results are slightly worse than Table 1 but asniegr
and classification are more than 1000 times sldinen
with our approach, the SVM parameters were noy full
tuned.

5. Conclusions

Mapping Agency for providing the image and vector
data gracefully.
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