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Abstract 

 
This paper presents an original development of 

disparity estimation of stereo couples primarily based 
on the similarity of image gradient between both 
images. Each pixel of the left image is associated to 
right image pixels with same gradient and similar 
intensity, directly leading to a set of disparities equal 
to the horizontal displacement in the specific case of 
epipolar images. Disparity values are restricted to an 
a priori acceptable range generally known by the 
application. The final disparity value assigned to a left 
image pixel is obtained from the histogram peak of 
candidate disparity values associated to pixels in the 
vicinity of the left pixel. A dense disparity map is 
produced. The conception and development have 
followed a very fast processing objective, resulting in 
about 0.75 Mpixel of disparity values per second on a 
2.33 GHz Intel Core 2 Duo CPU. It has been 
successfully applied to highlight buildings in several 
types of satellite and aerial images. 
 

1. Introduction 
 

Although image processing tasks have traditionally 
been considering 2D images as the most direct and 
easiest way to get information automatically, there is an 
increasing number of applications which take 
advantage of 3D information. 

Technology breakthrough of the last decade has 
enabled very accurate and fast cameras for image 
acquisition. Some systems also integrate image 
processing and possibly light or LASER projection to 
deliver 3D measures automatically. 

In the field of remote sensing, 3D measurements are 
of high importance when considering cartography, 
environmental monitoring or change detection. 
Although active 3D capture systems also exist (SAR, 
LIDAR), they remain expensive and are restricted to 
pure 3D information. We find stereoscopic pairs more 
attractive as they can also provide for radiometric 

information, for instance to filter out elevated 
vegetation when looking for buildings. 

In order to recover 3D measures from a stereoscopic 
pair, what is called computational stereo [1], two types 
of information are necessary. First, the position, 
orientation and characteristics (focal length, optical 
centre and lens distortion) of the camera for each image 
have to be known precisely thanks to calibration. 
Secondly, the image coordinates of each object of 
interest have to be extracted in each image. The 3D 
position of an object point is obtained at the 
intersection of the two 3D lines defined by each image 
point and associated camera geometry. 

For practical reasons, the images are often rectified 
by a projective transformation so that corresponding 
points in both images lie on a horizontal line [1]. In this 
geometry called epipolar, the correspondence problem 
is simplified to a 1-D search. 

This paper presents an original correspondence 
algorithm which aims at very fast (horizontal) disparity 
estimation for epipolar images thanks to gradient 
similarity. Matching left and right pixels of similar 
gradient leads to multiple disparities which are filtered 
according to intensity similarity to form the set of 
candidate disparity values attached to the left pixel. 
The disparity value retained for each left pixel 
corresponds to the peak in a histogram filled by 
candidate disparities for a square area surrounding the 
left pixel. This aggregation phase by a square area 
allows pixels with no candidate disparity to receive a 
probable disparity value so that the approach delivers a 
dense disparity map. 

The paper is organized as follows. Section 2 
presents a discussion about disparity estimation which 
has guided the proposed algorithm detailed in section 
3. Results are presented in section 4 in the form of 
disparity maps for different types of images. Section 5 
presents the disparity map as a step for building 
verification. Finally, section 6 concludes the paper and 
present perspectives. 
 



2. Disparity estimation 
 
2.1. Generalities 
 

The main topic of the paper is the estimation of the 
disparity which is, in the specific case of epipolar 
geometry, the horizontal signed distance in pixel 
between corresponding points in the left and right 
images. 

Two major classes of approaches have originally 
been followed to derive disparity [2]. The first one, 
called area-based approach, search for left and right 
pixel correspondences through the comparison of pixel 
neighborhoods to increase matching robustness. There 
is a tradeoff between robustness (in favor of larger 
areas) and localization precision obtained for smaller 
windows. Methods with multiple window sizes have 
been developed to address this tradeoff ([3,4]). Area-
based approaches deliver a disparity value at each pixel 
(dense disparity map), are generally simple to program 
but require much computational power. 

The second general class of first approaches, called 
feature-based, aims at identifying features of interest 
corresponding in both images. The type of features 
depends on the application but usually consists of 
points with high contrast like corners, lines or 2D 
homogeneous patches. The set of extracted features 
from the left and right images are then matched, 
possibly using associated radiometric or geometrical 
characteristics. Computational time is generally low, 
thanks to the proper selection of pertinent features, but 
disparity values are available at the extracted feature 
points only, leading to a sparse disparity map. A dense 
map may then be derived by interpolation. 

Combining the area and feature-based approaches is 
one possible way to design a fast and robust sparse 
disparity extractor. In Beumier [5], pixels with locally 
maximal gradient are matched based on gradient 
orientation and ranked according to local correlation. 
The best correlation is accepted as matching left-right 
pair with a confidence proportional to the correlation 
score. This approach has the ability to estimate the 
disparity of edge points of very high importance, 
especially for remote sensing images at 0.5m or 1m 
resolution. 
 
2.2. Image observation 
 

In the search for designing a correspondence 
algorithm appropriate for remote sensing images 
(satellite or airborne), many grey profiles of left and 
right images were analyzed visually. I summarize here 
the main observations. 

Intensity levels of left and right images (referring to 
panchromatic in the case of satellite Quickbird or 
Ikonos imagery and to one channel, typically green, in 
the case of airborne imagery) may undergo very large 
discrepancies due to occlusion, object motion and 
specular reflection. A method based on absolute 
intensity alone will not be adequate. In area-based 
approaches, intensity variation is usually addressed by 
the normalized cross correlation which normalizes 
differences relatively to the mean and standard 
deviation of the intensities in the window. 

Gradient values are robust against intensity level 
changes and provide for precise location (gradient 
maxima). 2D gradients contain in addition local 
geometrical information thanks to their orientation 
value. 

In the specific case of remote sensing imagery with 
resolution around 0.5m or 1m, little information is 
conveyed in slowly varying areas, except color when 
available, because shading is usually not captured and 
noise may be preponderant. Borders of such areas are 
the most reliable features on which to match left and 
right image parts. 
 
2.3. Computation time 
 

Computation time has been an important concern 
when developing the proposed solution initially 
devoted to remote sensing imagery which generally 
consists of 10 to 100 Mpixel images. Computer 
memories nowadays support such resolutions and 
processing the image as a whole prevents the tedious 
work of region selection or partitioning, and 
assembling the resulting parts into one image. 

As said before, area-based approaches suffer from 
the huge number of comparisons. A feature-based 
approach is much more attractive in that respect. 

One general way to speed up disparity estimation 
consists in multi-resolution, considering image versions 
at different resolutions. Smaller resolution images are 
processed first, implying a smaller search area and a 
reduced set of possible disparity values. Higher 
resolutions are then considered, taking advantage of 
disparity values obtained at previous resolution to 
confine search. Apart from the obvious computational 
gain, the approach also benefits from a higher 
robustness thanks to lower ambiguity at lower 
resolutions and the confined search. Last but not least, 
this scheme is also a good solution for noise and large 
uniform areas which tend to lack matching features. 

 
 



3. Proposed disparity estimation 
 

Following observations mentioned in 2.2 and 
computation time considerations outlined in 2.3, our 
research work was oriented towards finding image 
features which are simple to detect and to handle within 
a computer program, easy to compare while sufficiently 
spread in images to avoid too sparse disparity maps. As 
opposed to area-based approaches where pixel 
specificity for matching is brought by its neighborhood 
(‘aggregation in [7]’), we thought that disparity votes 
of possible matches, even incorrect, could be a 
posteriori filtered. Moreover, handling aggregation 
once disparities are obtained is more efficient and 
allows to output dense disparity maps. From a previous 
experience with disparity thanks to gradient [5], we 
adopted the horizontal gradient as basic feature. 

Integrating gradient into the process of 
computational stereo is not new, as attested by [6] 
which presents an overview of matching techniques 
based on image gradients. In this respect, the 
originality of the proposed approach is to avoid the 
time consuming of an a priori aggregation for gradient 
comparison used to select the winner left/right pair and 
to postpone the final disparity selection to an a 
posteriori aggregation phase by histogram of individual 
candidate disparity values obtained from left and right 
pixel comparison (see section 3). By this way, the 
approach combines the advantage of the feature-based 
and area-based approaches. 

When considering the taxonomy of stereo 
algorithms given in [7], the proposed correspondence 
method mainly concerns steps 3 and 4 about disparity 
computation and refinement. The candidate disparity 
values by gradient comparison is the ‘local’ aspect of 
the approach while the aggregation by histogram makes 
it more a ‘Global method’, distinction also made in the 
survey of Brown [1]. 

To go into implementation details, our development 
considered horizontal gradient of each left pixel as 
local feature to obtain a set of matching right pixels and 
derive associated disparity values. This set of candidate 
values is filtered by the allowable disparity range 
related to the application, by the gradient orientation 
and by the similarity of grey values. The final disparity 
value assigned to a left pixel is obtained as the maximal 
occurrence of candidate disparity values associated to 
pixels contained in a square area surrounding the 
considered left pixel. Details are given in the following 
subsections. 
 
 
 

3.1. Gradient as local feature 
 

In the proposed approach, the image gradient has 
been retained as local feature on which to base left and 
right matches and collect possible disparities that will 
be filtered as indicated in the following subsections. 

For efficiency and practical implementation, only 
the horizontal part of the gradient is first used. This 
corresponds to the sensitive information when 
considering epipolar images for which disparity is 
horizontal. Dealing with such a 1-D value allows for an 
efficient implementation which considers arrays of x 
coordinates associated to fixed horizontal gradient 
values. Matching a left pixel xL is a simple lookup in 
the table of xR corresponding to the horizontal gradient 
at xL. 

The horizontal gradient Gx at x is defined as the 
intensity difference Gx(x,y) = I(x+D,y) – I(x-D,y), with 
D controlling the locality of the gradient feature. A 
typical value for D is 2. A lower D value results in 
noisier estimation while a large value tends to blur 
estimated disparities. 

Not all gradient values need to be represented in the 
tables. We named L the parameter which controls the 
number of gradient levels. A value L=4 means that only 
gradient values multiple of 4 will be stored. 
Interpolation is used so that subpixel x coordinates are 
stored. A large L value reduces the number of (xL,xR) 
pairs considered for matching at the expense of fidelity. 
A small L value provides more possible matches at the 
expense of a larger running time. 
 
3.2. Disparity range 
 

The allowable range for disparity may be known 
from the scene geometry and camera arrangement. It 
can also be obtained from image observation or by trial 
and error with the computer program on one stereo 
couple and maintained for other stereo couples of the 
same campaign. Anyway, campaign designers paid 
attention so that disparity is only a fraction of the 
image size, trying to optimize the tradeoff between 
precision (large disparity) and image similarity (small 
disparity). 

The disparity program contains two limits ‘Off_min’ 
and ‘Off_max’ out of which disparity candidate values 
are rejected. Selecting loose limits may result in larger 
computation times and possibly spurious disparity 
values. Selecting too tight limits will reject correct 
values and end up with wrong disparity estimations. 
 
 



3.3 Gradient orientation 
 

To optimise implementation in terms of 
programming and running time, we preferred to create 
1-D tables of x coordinates for some given horizontal 
gradient values Gx (see 3.1). The vertical component 
Gy of the gradient has been used as a filter. 

Gradient orientation provides useful local 
information which is usually stable between captures. 
Slight orientation shifts may occur due to the different 
points of view of the left and right images. Rare cases 
involve inversion of contrast, usually due to specular 
reflection. 

As matching points xL and xR share the same Gx 
value (3.1), the condition on gradient orientation has 
been simplified to a condition on Gy, avoiding the 
heavy computations of atan(). We use the orientation 
constraint: 

 
k*|Gy(xL,y) – Gy(xR,y)| < |Gy(xL,y)| + |Gy(xR,y)| 
 

where | | denotes the absolute value, and k is a 
parameter to set the sensitivity to gradient orientation. 
In the experiments k was set to 3, which is quite a loose 
constraint. 
 
3.4. Intensity similarity 
 

Left and right intensity levels may differ either in 
the form of a global shift or local differences. As 
presented in 2.2, local variations may be very large, 
principally due to occlusion, specular reflection or 
object motion. 

In the proposed approach, gradient is given priority 
for matching and intensity is used as a rough filter to 
reduce the number of unlikely matches. This is 
implemented with a threshold ‘Thres’ which represents 
the maximal value by which left and right pixels may 
differ in intensity. Since xL and xR have been 
determined for fixed horizontal gradients with subpixel 
accuracy, associated intensity values were also linearly 
interpolated. This interpolation is not fundamental to 
the method but may be advantageous in steep edges 
where intensity values vary a lot. 

To account for a global shift of intensity levels 
between the left and right images, intensity comparison 
is corrected by the median of left and right pixel 
intensity differences obtained by histogram. 

Most optical cameras nowadays possess several 
channels. The current approach uses so far only one 
channel such as the panchromatic band for a Quickbird 
or Ikonos image or the green channel for an aerial 
image. A direct adaptation towards colour may consist 

in providing a threshold based on the norm of the 
vector whose components are channel values. 
However, observation of multispectral images reveals 
that most edges are reflected in all channels so that the 
gain relatively to one channel threshold is probably 
limited. A better ‘color’ approach would consist in 
measuring the hue in uniform areas. 
 
3.5. Aggregation 
 

Following the taxonomy of Scharstein & Szeliski 
[7], an aggregation phase is present in most 
correspondence algorithms. 

In area-based approaches, the difference between 
pixel pairs is aggregated over a window to improve 
robustness. In feature-based methods, robustness is 
achieved by the specificity of features. In the case of 
geometrical features, this corresponds to an 
aggregation of pixels into objects. For the feature-
based approach proposed in this paper, the locality of 
the gradient is not sufficient to resolve pairing 
ambiguities so that a larger scale representation is 
needed. Handling objects of possibly different and 
varying forms requires programming development that 
we preferred to avoid. The proposed aggregation 
scheme is performed a posteriori, once disparity 
candidate values are available. The disparity value 
assigned to a left pixel is derived from the distribution 
of candidate disparity values associated to neighboring 
left pixels of a square window. 

More specifically, the distribution of disparities 
associated to pixel xL is captured in a histogram 
considering a square neighborhood of size 
(2*SV+1)*(2*SV+1) and centered on pixel xL. For 
performance considerations, the histogram is initiated 
for each line at x = SV and updated by the inclusion of 
column xL+SV+1 and the exclusion of column xL-SV. A 
target disparity is obtained from the highest peak of 3 
consecutive bins in the histogram. This target value is 
refined to the highest histogram bin within +/- 1 bin. 
This last refinement reduces the blur effect of the 
aggregation. 

A value of 5 for SV corresponding to a 11x11 
aggregation window seems appropriate as a 
compromise between blurring and wrong estimation by 
lack of candidate disparity values. 

If a sparse disparity map is sufficient for the 
application, it is possible to de-activate aggregation 
(SV=-1) so that only disparity values at gradient pixels 
are output. In this case, xR candidates are ranked by 
grey similarity. This results in faster operation but very 
noisy estimates. 
 



4. Results 
 

Results of the proposed correspondence algorithm 
are given for different stereo couples of satellite and 
aerial images. Resolutions range from 10 cm to 1 m. 
For data containing multi-spectral information, only 
one channel has been used so far: panchromatic for 
Ikonos images and the green channel for aerial images. 
The intensity range has been cast to 8-bit if it had more 
resolution but no contrast adjustment has been made. 
 
4.1 Sensitivity to parameters 
 

Several parameters have been mentioned and 
discussed in section 3. Qualitative tests through 
disparity map observation were carried out with five 
stereo couples to find the influence and appropriate 
values of those parameters. 

Parameter D (locality of gradient, 3.1) was chosen 
equal to 2. Although D=1 may result in better 
localization, it is also more sensitive to noise. For 
D_>=_4, blur effects become important for a small 
gain in noise reduction. A noisy image will favor D=2 
or 3 while a clean image could use D=1. Compared to 
D=1, about 5 to 10% time saving was observed for 
D=3 thanks to the reduced gradient variation implying 
less matching pixels. 

For the 8-bit intensity data considered, the value of 
parameter L (3.1) was set to 2. A small L value means 
that more gradient levels are stored, what eventually 
leads to more disparity candidate values. Working with 
integer values for gradient Gx, L=1 implies the maximal 
number of candidate pixel pairs and the resulting 
disparity map offers the more coherent disparities. 
However, results are similar for L=2 or L=3, implying 
less computations as less pixels are stored in the tables. 
From L=1 to L=4, about 15 to 20% less global 
computation time was observed. The differences are 
mainly found in uniform areas where gradient values 
lack. 

The a priori allowable range of disparities (Off_min, 
Off_max) was discussed in 3.2 and does not need 
practical tests as the range is defined by the acquisition 
campaign. However, the scene geometry of a specific 
image (e.g. flat terrain) may allow a tighter range which 
can prevent some incoherent values. Running time 
increases with the range of disparities. 

Gradient orientation has a secondary role in our 
implementation and is controlled through parameter k. 
A small value for k will allow large orientation 
variations between the left and right pixels, increasing 
the number of pixel pairs (and candidate disparities) to 
be processed. Values below 2 seemed to filter few 

candidate pairs while values above 4 introduced 
disparity estimation with little confidence due to a lack 
of matching pixel pairs. We adopted k=3, keeping a 
confidence similar to k=1 while rejecting enough pixel 
pairs to reduce computation time (in the order of 25 to 
30%). 

The intensity similarity constraint, controlled by 
parameter Thres, has little influence on the results as 
long as it is not too strict. The considered image 
couples gave satisfying results with threshold above 8 
grey levels, except for couple ‘1’ (‘Bagdad’) containing 
large left and right intensity differences in flat roofs. 
Selecting a sufficiently high threshold value generally 
helps solving a few ambiguities (appearing as spurious 
disparities) and looking for the lowest acceptable 
threshold saves around 5 % computation time. Uniform 
areas are here also the most sensitive parts. Thres=15 
was good for all couples except couple ‘1’ (Thres=25). 

Aggregation by histogram is controlled by the size 
parameter SV. With SV=1 or 2, not enough pixels are 
used for the histogram, resulting in many spurious and 
erratic values, especially in low contrast areas. SV=4 
(9x9 window) is better. SV=6 seems to be right relative 
to the coherence of disparity values with tested images 
but object outlines are blurred. SV=6 is about 10% 
slower than SV=4. This parameter has by far the major 
impact on the visual results and was chosen equal to 5. 

As a conclusion about parameter sensitivity, 
aggregation seems to have made the algorithm little 
dependent on the parameters except SV. SV results 
from the tradeoff between disparity homogeneity and 
fidelity. 
 
4.2 Ikonos images 
 

Ikonos satellite imagery is captured with 1m 
panchromatic and 4m multispectral images. Only the 
panchromatic channel has been considered due to its 
resolution. Multispectral bands have not been tested 
neither added to the panchromatic data. 

One stereo pair covers a zone near Bagdad (Fig. 1). 
The images have little contrast (intensity in the range 
[10..90], enhanced for display in Fig. 1). Large 
discrepancies exist between left and right intensity 
levels, mainly for flat roofs. The disparity range is 
[−32..0] and the map is represented in false color to 
highlight small differences and similar elevation. The 
1m resolution limits the detection by disparity to 
medium or large size structures (mainly located in the 
top left quadrant) although areas with houses are 
highlighted (right part). Elevated vegetation is also 
visible (wood at middle bottom and rows of trees at 
middle top) but with a variable quality. Erroneous and 



erratic disparity values are mainly found in large 
uniform areas. 

 

 
Figure 1. a) Left image of part of Ikonos image 
around Bagdad; b) Disparity map 
 

A part of another Ikonos image was successfully 
processed, covering an area of Graz. As a 3D ground 
truth is available for this stereo couple, a quantitative 
estimation is planned. 
 
4.3 Aerial images 
 

Airborne campaign is the preferred solution for the 
capture of a digital surface model in built-up areas. We 
have tested our correspondence algorithm on three 
types of stereo aerial imagery. 

First, two black and white images corresponding to 
the old generation of photogrammetric data at the 
Belgian National Geographic Institute (IGN) were 
considered. These are digitized versions of ‘analog’ 
pictures shot at 30 cm ground resolution and scanned. 
They are very noisy and suffer from a large base to 
height ratio, implying large left/right differences from 
the important parallax. For this couple, we have at our 

disposal the building and road vector database allowing 
for a building verification assessment. This is presented 
in section 5. 

Secondly, a couple of digital multispectral images in 
the region of Virton (Belgium) was tested. With a 
ground resolution of 0.5m, these images correspond to 
what IGN Belgium is currently acquiring for database 
update by restitution. The green channel was selected 
as intensity input. 

 

 

 
Figure 2. a) Part of the left RGB image of 
stereo couple around Virton; b) Disparity map 

 
Fig. 2 shows the disparity map of an area covering 

about 1 km2. With the available resolution, buildings 
and isolated houses clearly appears in the false color 
map. The figure shows the hilly aspect of the area and 
the proper detection of woods (top right). Incorrect 
values are found in poorly textured areas (fields of 



middle top and large buildings in the yellow/bright area 
around the centre). 

A close-up in Fig. 3 shows the quality of the 
building outlines and the restitution of most isolated 
trees. 

 

 
Figure 3. Close-up from central area of Fig. 2 

 
Finally, the correspondence algorithm has been 

applied on a couple of very high resolution (0.1m) of 
multispectral images. This resolution is most of the 
time considered to capture the digital surface model of 
dense urban areas. It was ordered by the CIRB 
(Brussels Regional Informatics Centre) on the Brussels 
region. 

 

 
Figure 4. Small area of the left image of 

Brussels at 0.1m and disparity map 
 
Fig. 4 presents a small area in Brussels captured at 

the 0.1m resolution and the associated disparity map. 
With a range of more than 60 pixels, the disparities are 
also better seen in false color, although in this case the 
32 colormap entries were used several times, meaning 

that each color may represent two different disparities 
(separated by 32 pixels). The higher resolution enables 
the distinction of several details like the varying levels 
of gable roofs and the vehicles parked in the streets. 
Erroneous disparity values are found in poorly textured 
areas (middle of roads, large roofs and trees with no 
leaves in the square). 
 
4.4 Results summary 
 

Table 1 lists image characteristics and running times 
for the different experiments with the set of parameters 
mentioned in 4.1 (D=2, L=2, k=3, SV=5). 

 
Table 1. Summary of data and running times 

ID Name Image Size Range Time 
1 Bagdad Ikonos, 1m 3.8 Mp -32..0 4.3s 
2 Graz Ikonos, 1m 3.2 Mp 10..72 4.5s 
3 Malle Aerial 0.3m 12 Mp -72..-32 14.7s 
4 Virton Aerial 0.5m 12 Mp -32..32 16.5s 
5 Brussels Aerial 0.1m 12 Mp -64..8 16.1s 

 
Running times for these experiments range from 

1.12s to 1.41s by Mpixel. 
Wrong disparity estimations with the approach are 

commonly met in poorly textured areas, where 
candidate disparities lack. The aggregation may solve 
this problem to a limited extent because too large SV 
values results in blurred disparities. A general solution 
for large uniform areas consists in adopting a multi-
resolution scheme, as explained in 2.3. 
 

5. Building verification 
 

The main application of the presented work in 
disparity estimation concerns change detection of 
buildings. As detailed in [5], we first considered the 
disparity of contour points so relevant for man-made 
structures as a way to assess the presence of buildings. 
In an attempt to go further in precision, we believe that 
a dense disparity map even with some imperfections 
will simplify the accurate estimation of disparity by 
model-based approaches. The step of acquiring the 
digital terrain model necessary in [5] can also be 
obtained very quickly with the proposed 
correspondence algorithm. 

In order to assess the presence of buildings specified 
in the vector database, there is no need to reconstruct 
the 3D map since disparity values suffice to highlight 
elevated buildings. The approach detailed in [5] can be 
followed, replacing the sparse disparity map by the 
dense map of the present work. 



Fig. 5 shows the potential for building verification 
thanks to the superposition of the vector database 
(polygons of the buildings and roads layers) on the 
disparity map for stereo couple ‘3’ (Malle, Belgium). 
 

 
Figure 5. Polygons of the vector database 
superposed on the dense disparity map 

 

6. Conclusions and perspectives 
 

This paper has presented an original correspondence 
algorithm for stereo couples based on the association of 
left and right pixels with same horizontal gradient. The 
candidate disparity values are filtered by gradient 
orientation and intensity constraints. The estimated 
disparity value of each left image pixel is obtained 
from the best occurrence of candidate disparity values 
associated to pixels in a square neighborhood of the left 
pixel. Although isolated feature points lead to disparity 
values of little confidence, aggregation with the square 
window offers a valid way to obtain a spatially 
coherent disparity map as demonstrated by several 
examples with satellite or airborne imagery. 

The implementation results in a short and quite 
simple source code, processing line after line and 
delivering a throughput of about 0.75Mpixel per 
second on a 2.33 GHz Intel Core 2 Duo CPU. 

As suggested in the text, we intend to integrate a 
multi-resolution scheme to this approach in order to 
solve the common problem of disparity estimation in 
large poorly textured areas. To a smaller extent, we 

also plan to replace the intensity constraint by a multi-
spectral condition to benefit from the different image 
bands of nowadays imagery. 
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