Face verification from 3D and grey level clues

C. Beumier, M. Acheroy

Signal & Image Centre, Royal Military Academy, Belgium "

Abstract

We address in this paper automatic face verification from 3D facial surface and grey
level analysis. 3D acquisition is performed by a structured light system, adapted to
face capture and allowing grey level acquisition in alignment. The 3D facial shapes
are compared and the residual error after 3D matching is used as a first similarity
measure. A second similarity measure is derived from grey level comparison. As
expected, fusing 3D and intensity information increases verification performances.
The acquisition system, the 3D and grey level comparison algorithms were designed
to be integrated in security applications in which individuals cooperate.

Key words: Face Verification, 3-D acquisition, 3-D matching, intensity
comparison, fusion.

1 Introduction

Although PIN codes and cards have been the only viable solution for access
control till recently, biometric verification appears more and more attractive
considering loss or theft of cards. However, existing prototypes based on user
accepted biometric modalities such as speech or face still suffer from limited
performances in practical situations. One way to override these limitations
with little additional cost is to combine modalities (2; 7).

Our approach consists in combining 3D and grey level clues. On the one hand,
3D facial descriptions bring much information, with little dependence from
pose, lighting conditions or makeup. On the other hand, grey level clues com-
plement well 3D information. They are localized in hair, eyebrows, eyes, nose,
mouth, and facial hairs, precisely where 3D capture is difficult and not accu-
rate. It also allows for the integration of skin and hair colours.
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A huge research effort has been devoted to intensity analysis of frontal face
images (10). Most of the methods are sensitive to pose and lighting conditions.
Our approach is to use 3D information to enhance the grey level analysis. First,
the orientation of the projected light and the normal to the surface allow to
estimate the albedo, a surface characteristic independent from viewpoint or
illumination. Secondly, the facial 3D coordinates ease the registration of grey
values. Thirdly, face detection is much easier from range data.

The adequacy of geometrical analysis was supported by our own experience
in building a practical prototype for real-time profile recognition (3) and by
the success of many profile works (10). A facial 3D description brings much
more information, possibly rotation and scale independent. Although 3D facial
modelling for compression and synthesis as in videoconferencing or medical
applications is not a new field of interest, 3D facial recognition activities are
still weakly addressed (1; 8; 9; 11) in the literature.

3D capture is usually expensive and slow. From the design of a structured light
system adapted to facial surface acquisition, we collected 3D descriptions with
sufficient quality and facial covering to perform recognition experiments. The
aligned 3D and grey level data have been captured by the same equipment,
switching the projector on and off.

The next section presents the 3D acquisition system. A deeper presentation is
to be found in (4). The acquisition system was tested during the collection of
a database, matter of section 3, and used for recognition experiments. Section
4 introduces the most promising of the approaches considered to compare
3D facial representations. Section 5 explains how grey level values have been
integrated in the recognition process. Recognition results are presented in
section 7. Section 8 concludes the paper.

2 3D acquisition

2.1 Motiwwations for structured light

Structured light acquisition systems use the projection of a known pattern
of light (in our case, parallel ’stripes’) to recover 3D coordinates. Compared
to other 3D acquisition techniques (12), structured light limits the additional
cost to a projector and its slide, reduces the influence of ambient light and
allows the acquisition of volume and texture information in correspondence.
Moreover, a single striped image contains volume information, enabling fast
capture and little sensitivity to motion. The drawbacks of a structured light
system are its relative bulkiness, the need for light power and the limited field
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Fig. 1. Corresponding a) striped and b) grey images from the database

of depth due to the camera and projector lenses.

2.2 Set-up

The prototype consists of a normal grey level camera and a projector whose
slide was drawn by an accurate microelectronics process. With an appropriate
selection of lenses, the field of view covers 30x40 c¢m at a distance of 1m40, and
with 40 cm as depth of focus, which fulfils the needs for sitting attitudes in
cooperative situations. As seen in Fig. 1, the faces are patterned diagonally by
the stripes to have the best compromise between the minimum of interference
with facial features and the maximal similarity of stripe density (and thus
resolution) between the left and right facial parts.

2.8 3D extraction

Automatic 3D extraction is performed by stripe detection and indexing. Stripes
are detected by horizontal gradient and followed vertically. Their relative thick-
ness (Fig. 2) is estimated thanks to horizontal grey profiles by comparing the
width of the dark and following bright zone of the stripe. The binary thick-
ness (thin/thick) of a few neighbouring stripes suffices to recover their index.
The stripe indices and the x, y image position of points along the stripes are
converted into X, Y, Z by triangulation. Refer to (4) for details.

This implementation is very fast (less than 1 second on a Pentium 200) while
offering sufficient resolution (more than 2 points per cm in each direction) for
recognition purposes. Background objects are not captured as stripes get out
of focus on them.
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Fig. 2. Slide for projection

3 3D database

We created a database to validate the acquisition system and perform recog-
nition tests (see (5)).

Three sessions (end 97, beginning 98, mid 99) have been completed with more
than 100 people. For each session, the individuals were asked to sit and adopt
three different poses (corresponding to central, limited left or right and up or
down). A grey level image without projection and corresponding to the central
pose was also captured.

Fig. 1 shows a striped image and the corresponding grey image (without pro-
jection). Fig. 3 represents 3D reconstructions obtained from the left image
of Fig. 1. Running the 3D reconstruction algorithm (see 2.3) on the whole
database made us confident in the overall quality of stripe following, indexing
and background independence. The important source of acquisition problems
concerns the glasses (one third of people wearing glasses had to be rejected)
and beard, hair and eyes, globally accounting for less than 10 % of rejection.

4 3D face comparison

The different approaches considered by the author for the comparison of facial
volume information were presented in (6). The most attractive technique rel-
atively to simplicity, performance, memory and speed considerations is based
on the extraction and comparison of central and lateral profiles (see Fig. 4).

Matching scaled 3D surfaces is a 6-dimensional optimization consisting of three
rotation and three translation parameters. Assuming a vertical symmetry of
the faces, three parameters (one translation and two rotations) can be opti-
mized prior to any face comparison by looking for the maximal protrusion of
the central profile and the maximal symmetry of left and right lateral pro-
files. The three remaining parameters are solved when matching the extracted
profiles.
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Fig. 3. 3D reconstructions from the left Fig. 4. Central and lat-
image of Fig. 1 eral profiles after intrin-
sic normalization

The automatically extracted profiles (central and mean lateral, average of the
left and right lateral profiles at +3 and —3 c¢m from the nose) were trans-
formed into local angular values by computing the slope of the curve between
two points sliding along the curve with fixed distance (4 cm). The angular
curves were compared by the standard deviation of the angle difference be-
tween corresponding points. Corresponding points are obtained relatively to
the nose reference (the center of the most protrusive points), allowing for one
shift parameter to account for imprecise nose localization. The 3-parameter
search to match two profiles is thus replaced by a 1-dimensional minimization.

5 Grey level comparison

5.1 Motiwwations for grey level analysis

A grey level analysis complements the 3-D processing steps performed so far.

First, 3D acquisition problems arise from grey level disturbances such as in
facial hairs, eyes, nostril and mouth. A possible improvement is to avoid 3D
extraction in such regions.

Secondly, 3D matching has been carried out with the sole 3D geometrical infor-
mation. Noise or local minima may prevent from reaching the optimal solution.
The inclusion of intensity clues during matching could speed up comparison
and reduce local minima by giving more accurate initial conditions.

Finally, facial 3D and texture clues are likely to be weakly correlated, so that
their combination should enhance performances. 3D matching mainly concerns
areas of the forehead, cheeks and chin, where grey information is weak. On the



contrary, grey level features are related to parts where 3D sensing is difficult or
inaccurate. A grey level analysis can also incorporate facial hairs localization,
and skin, eye or facial hairs colour.

In this paper, we consider the inclusion of grey level clues to improve the
recognition performances, by an a posteriori combination with 3D comparison
scores.

5.2 Grey level measurement

One way to get intensity values in registration with 3D data is to read between
the stripes of the striped image. This requires no extra image acquisition or
storage and 3D and grey level values are in perfect alignment. Proesmans (13)
proposed a nice method to do this, although our projected stripes are too
thick to obtain results of a similar quality.

Nevertheless, striped images involve important light reflections due to the
directionality of the projected beam. Also, the stripes largely influence grey
levels in their neighbourhood. Before trying to compensate for these effects,
we preferred to compare grey level images obtained by switching the projector
off (see Fig. 1). It seems that ambient light was sufficiently isotropic in grey
level images to neglect corrections for reflections.

5.3 Geometry compensation

We first decided to get a 1-D profile of grey level values along the central line
(passing through the nose). Because distances between points of a 2-D image
depend on pose, we used the 3D coordinates of the automatically extracted
central profile (see section 4) to derive a Euclidian indexing of points along the
profile. The definition of this profile (intersection with the vertical symmetry
plane) also calls for a better reproduction than a straight line on a 2-D image.

Since the grey image is registered with the striped image, striped image co-
ordinates of the profile points were used to get intensity values from the grey
image. To reduce the influence of noise and to extract more information from
the mouth, nostrils, eyes and eyebrows, for each point of the profile, we aver-
aged grey values from a direction perpendicular to the central profile (up to 4
cm each side).

To better describe the face, we later extracted grey values from the lateral
profiles obtained during the 3D analysis (see section 4). We then reduced the
bandwidth for average of the central profile to about 2.5 cm and we adopted
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Fig. 5. Areas of grey-level average perpendicularly to the central and lateral profiles

the same width for the lateral profiles (see Fig. 5). These left and right grey
profiles were summed to increase robustness.

5.4 Grey level compensation

Absolute grey level values are not invariant. They depend on illumination.

A first compensation was achieved by considering the local difference of grey
levels along the profile. This reduces the dependence of grey measures on am-
bient light and reinforces the importance of the position of grey level features
relatively to their intensity values.

Another compensation should take into account the influence of the local
surface orientation on the grey level. From the 3D description and a reflectance
model, one is able to derive the albedo, a surface characteristic independent
of viewpoint and illumination, and better suited to comparison. However, the
grey images had a rather diffused illumination so that grey levels were used
without correction.

5.5  Grey profiles

The grey level extraction and compensation process delivers two 2D curves
indexed by the signed distance to the nose reference point (negative towards
chin, positive towards forehead), giving the local difference (along the profile)
of average intensities (across the profile). Fig. 6 shows the compensated grey
profiles for the first two sessions of two persons.
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Fig. 6. Central and lateral grey level profiles of 2 persons, sessions 1 and 2

5.6 Grey profile comparison

The geometry and grey level compensations allow the direct comparison of
extracted grey profiles. However, the nose point used as reference may suffer
from imprecision so that several shifts (—2cm..4+2cm) between profiles were
considered. For each shift, the histogram of the difference of corresponding
profile values is computed. The minimum value of the mean (for all shifts) of
the 95 % lowest bins of the histogram is the distance measure. Getting rid of
the 5 % highest differences is a way to eliminate non representative values.

5.7 Using striped images

Thanks to the average perpendicularly to the profiles and diagonally to the
stripes, grey level measurements from striped images are not so much influ-
enced by the stripes. Using the striped image simplifies the integration since
a single image delivers 3D and intensity data. It also allowed us to conduct
more tests thanks to the three shots. The only practical implication was the
necessity to increase the bandwith of average (from 2.5 to 3.5 ¢cm) to better
smooth out the stripes.

6 Fusion

The main objective of the grey level analysis is to access additional informa-
tion to be combined with the 3D analysis. The fusion of these two experts
will probably improve the recognition performance and the robustness of the
system. Although the boolean decision of each expert could have been used



("hard fusion”), we preferred to fuse the two experts at their score level (”soft
fusion”) since each time thresholding is applied, part of the information is lost.

Referring to the study made by (14), we linearly combined the scores of the
four experts (namely 3D and grey for the central and lateral profiles) and
looked for the minimal error in terms of both false acceptance and false re-
jection. The coefficients of this linear combination are estimated using the
Fisher method which looks for the hyperplane that best separates the client
and impostor training scores. A part of client and impostor claims is used
to train the fusion engine, while the rest is used to evaluate the operational
false acceptance and false rejection rates. The ROC curve drawn from the op-
timal coefficients represents the false acceptance and false rejection rates for
different values of the decision threshold.

7 Results

We present here the recognition performances of 3D analysis, grey comparison
and their fusion, for comparison of session2 data with sessionl. All figures
concern automatic processing of all steps (3D acquisition, profile extraction
and comparison, and grey level measurement and comparison).

7.1 3D experts

Tables of Equal Error Rates (EER) for recognition from 3D central and lateral
profiles are given in (6). We give in Table 1 the results which are useful for
fusion with grey level profiles.

session2/sessionl Central | Lateral
3D Shot 1 120 % | 8.0 %

3D Shots 1,2,3 14.0 % | 12.0 %
Grey (grey) Shot 1 95 % | 16.5 %

Grey (striped) Shot 1 120% | 17.5 %
Grey (striped) Shots 1,2,3 || 16.0 % | 20.5 %

Table 1
EER from 3D and grey analysis for the central and lateral profiles
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Fig. 7. ROC Curves for the fusion of 3D and Grey, with grey or striped images

7.2  Grey experts

In a first experiment, grey measurements used the grey images (only available
for shot 1). For compatibility with previous 3D experiments, the first 30 alpha-
betically ordered people were tested. Due to acquisition errors, three persons
of sessionl and one of session2 were rejected, limiting to 26 the number of
clients claims.

In a second experiment, grey measurements were obtained from the striped
images, enabling the simultaneous capture of grey and 3D data from a single
image and allowing a better representation of people (three shots per session,
234 client claims). For comparison purposes, tests with the sole shot 1 were
also carried out. See Table 1.

7.8 Fusion

We applied the Fisher method to linearly combine the two grey and two 3D
experts. The results are presented in the form of ROC curves for different cases
of grey analysis. Grey measurements either come from grey images (shot 1) or
striped images (shot 1 or shots 1,2,3). The EER is estimated to respectively
1.2 %, 3.0 % (not in Figure) and 7.8 %. Compared to the individual scores of
Table 1, the fusion brings a clear advantage in recognition performances.

The difference in performance levels comes from the variability of the images
used for tests. Grey images only concern shot 1, with a diffuse illumination
and a rather similar frontal pose for the two sessions. Striped images, shot
1, gives similar results thanks to the similar frontal pose and, consequently,
the similar light reflection of the projected light. Striped images, all shots,
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introduce pose variations with lighting influences and 3D deficiencies.

EER values have to be compared with caution, knowing that the number of
False Rejection tests were small. These values were obtained using a fully
automatic version of all processing steps. We are convinced that the figures
are underestimated, according to the identification of the three main causes
of errors detailed in the next section.

7.4 Main sources of error

7.4.1 Error from representation

In the tests related to shot 1 only, the number of false rejection tests were
limited to 26, implying a high sensitivity to change in attitude or physical ap-
pearance. Performances should benefit from a better representation of people,
disposing of several shots from different situations. In the tests involving 3
shots, it was possible to take advantage of the three references by combining
the matching scores. Using a simple sum, the EER of the fusion of 3D and
grey experts fell from 7.8 % to 4.5 %. Fusing the scores of several captures
is another way to better represent the people. This last enhancement is more
time consuming.

7.4.2  Error from acquisition

Our 3D acquisition prototype is not perfect. This obliged us to reject four
subjects from the tests and affects in general the quality of the representations.

Grey level values also suffer from acquisition errors. On the one hand, image
grey values depend on ambient light or reflections. On the other hand, our grey
measurement method relies on 3D profile extraction, subject to imprecision.
Due to this, the 3D and grey data are not independent.

7.4.3 Error from matching

3D comparison is carried out by an optimisation procedure which can fail due
to noise, local minima or bad initial parameter values. Grey level matching
only concerns a shift parameter and is less sensitive to these problems. The
3D and grey matching were performed independently. The constraint that the
shift parameter should be consistent should bring more discriminative power.
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7.5 Discussion of the method

The presented grey level analysis was successfully integrated in the existing
3D comparison method from central and lateral profiles. First, grey measure-
ments are obtained directly if one disposes of a grey level image in alignment
with the striped image. Under the same assumption, grey normalization based
on Euclidian distances and surface normal (for reflection compensation), can
be derived from the 3D information. Thirdly, the grey profile comparison pro-
cedure is not critical and the one presented here benefits from simplicity and
quickness. The current implementation takes 0.5 second to perform central
and lateral profile extraction. 0.1 second is needed to compare two faces by
the proposed 3D and grey analysis. We also showed that using the striped
images for grey measurement implied a small performance penalty and allows
easy 3D and intensity capture from the same image.

As presented in section 5, the simultaneous analysis of grey and geometrical
information could be further investigated. Grey level measures can help 3D
acquisition and 3D profile extraction. Some gain could be obtained with little
effort by comparing 3D and grey profiles simultaneously, using the same shift
parameter.

8 Conclusions

Face recognition from 3D facial and grey level clues has been presented. Facial
surfaces are acquired by an original, cheap and fast structured light system. 3D
comparison is performed by central and lateral profile matching. Grey analysis
is made along these profiles, using 3D information for distance normalization.

The recognition rates, improved by the combination of 3D and grey data, sup-
ports the approach. The time latency of 2 seconds to get a 3D representation
and compare it to the claimed reference, is compatible with a practical appli-
cation. Background removal, rotation and scale independence are important
assets of the method, and infra-red projection should further guarantee appli-
cation success, offering more comfort for the user and being more discrete.
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