
Automatic 3D Face AuthenticationCharles Beumier 1;2 and Marc AcheroySignal & Image Centre, Royal Military Academy, Avenue de la Renaissance 30,B1000 Brussels, BelgiumAbstractThis paper presents automatic face authentication from facial surface analysis. Thisgeometrical approach was motivated by di�culties encountered when consideringfrontal face recognition. Apart from being less sensitive to viewpoint and lightingconditions, the method exploits information which is complementary to grey levelbased approaches, enabling the fusion with those techniques. A 3D acquisition sys-tem based on structured light and adapted to facial surface capture is presented. Itis cheap and fast while o�ering a su�cient resolution for face recognition purposes.The acquisition system and the 3D face comparison algorithm were designed to beintegrated in security applications with cooperative scenario.Key words: Face recognition; structured light; surface comparison
1 IntroductionBiometric measurements receive an increasing interest for security applicationswhere PIN codes and cards are less desired (due to loss or theft). In cooperativeenvironments, speech and face modalities are well accepted by individuals butthey still su�er from limited performances. To achieve a su�cient level ofreliability, several modalities (speech, pro�le, face, 3D) may be combined [1,4].A previous pro�le analysis [2] has shown the adequacy of geometrical informa-tion for automatic person authentication. It takes bene�t from the rigidity ofthe parts involved (forehead, nose, chin) and the little dependence on makeupor lighting conditions. This explains the success of many pro�le works [6,9].1 Corresponding author. E-mail: beumier@elec.rma.ac.be2 Supported by the European ACTS program (AC102 \M2VTS")Preprint submitted to Elsevier Preprint 26 February 1999



More geometrical information is taken from a facial 3D description, especiallywhere grey level features lack as in the chin, forehead and cheek regions. Theanalysis can bene�t from real 3D measures (no scale or rotation inuence).Depth information also helps segmenting the face from background objects.Those advantages clearly state the 3D geometrical approach as complementaryto the grey level analysis. Although 3D facial modelling for compression andsynthesis as in videoconferencing [10] or medical applications is not a new �eldof interest, 3D facial authentication activities are still weakly addressed [8,14]in the literature in comparison with frontal or pro�le developments.3D capture is usually expensive and slow. We designed a 3D acquisition pro-totype based on structured light which is adapted to facial surface acquisi-tion. Its resolution, speed and su�cient facial covering make it appropriatefor practical implementations. The emergence on the market of structuredlight systems for 3D face acquisition supports our choice. However, hair andbeard are not properly acquired, and a grey level analysis remains attractive.Switching the projector on and o� is a simple way to get geometrical and greylevel information in alignment from the same hardware equipment.The next section describes the structured light acquisition system. The hard-ware choices are motivated and the calibration and 3D extraction proceduresare presented. The acquisition prototype has been tested during the collectionof a 3D database, matter of section 3, which was used later for recognitionexperiments. Section 4 introduces two approaches considered to compare 3Dfacial representations: a facial surface matching algorithm and a pro�le match-ing procedure after intrinsic normalization. Recognition results are presentedin section 5. Section 6 concludes the paper.2 3D acquisition2.1 Motivations for structured lightAmong the possible range acquisition systems [11,12], structured light hasemerged as the solution for 3D acquisition in our context. It is based on theprojection of a known light pattern (in our case parallel 'stripes'). The lightpattern deformation, captured by a camera, contains the depth informationof the scene.Four advantages motivate our choice. First, the additional cost is limited toa projector and a slide. Secondly, a standard camera is precise enough andbene�ts from the high speed of video hardware. A single image with stripessu�ces to recover 3D information. This enables sequence analysis and time in-2



tegration. Thirdly, switching the projector on and o� allows to acquire volumeand texture information in correspondence. Fourthly, the projector illumina-tion reduces the inuence of ambient light. In particular, near infra-red lightis more discreet and does not dazzle the individual.The drawbacks of a structured light system are its relative bulkiness and itslimited �eld of depth due to the camera and projector lenses.2.2 Hardware choicesTo keep investments low, we opted for o�-the-shelf components. We use astandard CCD black and white camera plugged into a 768x576 pixels imagedigitiser. A 24x36mm projector projects its light through a slide coding thestripe indices in the thickness (thin or thick) of neighbouring stripes.2.3 Set-upThe camera and the projector have their optical axes co-planar to reduce thenumber of parameters to be calibrated. Both optical systems have a limitedspan and depth of focus; the �eld of view covers about 30x40 cm at 1m40from the camera/projector head, with a depth of focus of about 40 cm. Thisis su�cient for sitting attitudes in cooperative situations.2.4 CalibrationThe �rst calibration step consists in rough measurements of the camera andprojector distance and relative angle. Rough values are also given to parame-ters depending on the pixel size of the camera/digitiser pair as well as slide andlenses characteristics. Then automatic re�nement is performed by presentinga square object in several orientations and trying to make the 3D corners beat the vertices of a planar square of known size. Typical relative errors on theestimated square side is 2 %.2.5 3D extractionAutomatic 3D extraction is done by stripe detection and labelling. From eachpoint of a stripe and its label, triangulation allows for X, Y and Z estimations.3
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Fig. 1. a) Striped image b) Stripe detection and thickness (white=thin, black=thick)Stripe detection is carried out by line following helped by the linear natureof the light pattern. Stripe thickness is estimated from the grey level pro�lesacross the stripes. Local thickness distribution of neighbouring stripes helpsinitiating stripe labeling from the known thickness distribution of the slide.The global coherence of this labeling is checked against normal ordering andspacing of stripes to detect and solve local inconsistencies (commonly foundin abrupt transitions of the nose and chin) and propose labels in non-labelledareas (for instance due to grey level troubles in eyes or beard regions). Thelabel of the stripes and the x, y image position of points along the stripes areconverted into X, Y, Z thanks to calibrated parameters.This implementation is very fast (half a second on a Pentium 200) whileo�ering su�cient resolution for recognition purposes. A comfortable coveringof the face is possible, nearly from ear to ear and including the throat. Stripesprojected on the background are normally out of focus and do not complicateface extraction. Noses and eyes often raise minor problems. Beard and glassesinduce large errors if the beard is bushy and the glasses have thick frames.3 3D databaseIn order to test the performances of the acquisition system and of the com-parison approaches, we prepared a database with the following criteria.First, a su�cient number of individuals had to be acquired. We started with120 persons. Secondly, we selected people likely to stay in our reach to get longterm statistics from sessions separated by several months. Thirdly, di�erentproblems encountered in the cooperative scenario were taken into account(spectacles, smiles, head rotation).Until now two sessions with the same 120 individuals have been completed.People were asked to sit and to look at the camera. We took three shots persession, corresponding to central, limited left/right and up/down poses.4



Fig. 2. Samples from the database

Fig. 3. 3D reconstructions from left image of Fig. 2From these sessions, we built up two databases. The �rst one, called the auto-matic DB, used the automatic program described in subsection 2.5 to get the3D representations of all the individuals. For the second database, called themanual DB, the 3D extraction process was performed interactively by click-ing initial points on the stripes, assigning them a thin or thick attribute. Onlythe �rst 30 individuals were processed manually, delivering su�cient data toanalyse the possible enhancement of a better acquisition program.Fig. 2 shows 4 images of the same person, from the two sessions. Fig. 3 repre-sents 3D reconstructions of the automatic DB from di�erent points of viewscorresponding to the left image of Fig. 2.Running the 3D reconstruction algorithm (see section 2.5) on the whole databasemade us con�dent in the overall quality of stripe following, labelling and back-ground independence. However, it highlighted possible problems encounteredin bushy beards, glasses, nose and eyes, by order of importance.5



4 3D face comparisonWhen we began this 3D face recognition project, in 1995, the related litteraturewas poor. Several studies [8,16,13] concentrated on curvature analysis. Ourown tests in this direction were unsatisfactory, due to the limited quality ofthe range data (noise in eyes, nose or mouth).We preferred to analyse the 2D (striped) images in order to postpone the timeconsuming 3D conversion. Although studies were carried out in that directionby some researchers [7,15], coping with the inuence of the viewpoint on theshape of the stripes seemed too di�cult. Only the prominence of the nose ledto its localisation.We thus came back to range processing, looking for characteristics to reducethe 3D data to a set of features easily and quickly compared. We �rst estimatedthe prominence of the nose relative to points of the cheeks located at a givendistance from the nose tip. As second feature, the nose length was measuredby localising the nose tip and the nose saddle (between the eyes).Although the approach was successful, the nose seems to be the only facialpart providing robust geometrical features for limited e�ort. Mouthes and eyesmay involve disturbances. Foreheads, cheeks and chins don't clearly exhibitreference points for normalisation. We abandoned feature extraction and con-sidered the global matching of the facial surface.4.1 Surface matchingThe surface matching approach consists in �nding some distance measurewhich quanti�es the di�erence between two 3D surfaces and in tuning the setof parameters (translations and rotations) to minimize the distance measure.At most 15 pro�les (-7..+7, see Fig. 4) are extracted from each facial surface byintersection with parallel planes spaced with 1 cm. Each pair of correspondingpro�les is compared to issue a pro�le distance: the area between the twopro�les divided by the arc length. The average of these pro�le distances of allcorresponding pro�le pairs is the global error which has to be minimised.The minimization of the global distance is performed by an Iterative Con-ditional Mode optimization, which tunes each parameter (3 rotations and 3translations) on its own, one after the other. The minimization is organized ascycles of ICM, separated by the reduction of each parameter search space. Theinitial translation parameters are based on the rough localization of the nosetip. The planes are initially vertical and oriented according to the left/right6
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Fig. 4. a) Pro�les from two 3D representations with noses already in correspondence.b) Pro�les of the representations after surface matchingorientation obtained from the cheeks. The last orientation parameter is ini-tialized from the up/down angle obtained from the forehead and nose. Thesestarting conditions closer to the solution avoid many local minima and speedup the optimization by earlier reduction of the search space.Some recognition results of this automatic surface matching procedure areshown in Fig. 5. The residual false rejection rates for large false acceptancerates reveals local minima in the automatic optimization either due to badinitial parameter values or important noise in the input data. Beard, glassesand nose discontinuities are the most common problems. Manual re�nementfrom visual pro�le �tting avoids many local minima.Although the approach and the computations were optimized, the algorithmis still slow: about 1 second to compare two facial surfaces.4.2 Central and lateral pro�lesIn order to speed up the facial surface comparison, we split the 6-dimensionaloptimization into a 3-dimensional normalization based on facial symmetryfollowed by a 3-dimensional pro�le comparison (realized by a 1-dimensionalcurvature matching). Refer to [5] for a similar approach which extracts thecentral pro�le by looking for the vertical symmetry axis of gaussian curvature7
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3.5Fig. 5. ROC curves of 3D surface matching for the manual database, with (Manual)and without (Automatic) manual tuning (see text)
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Fig. 6. Central and lateral pro�les after intrinsic normalizationvalues of the facial surface.Under the assumption of vertical facial symmetry, we automatised centralpro�le extraction by looking for the pro�le with maximal protrusion (due tothe nose) and with maximal symmetry of left and right pro�les parallel and3 cm away from it. This optimum search is quick as it only depends on threeparameters (one translation and 2 rotations).The automatically extracted central pro�les were compared in the curvaturespace, by transforming each two-dimensional pro�le into the one-dimensionallocal curvature values along this pro�le. In the curvature space, values canbe compared directly, dealing with only one shift parameter (for instance tobring the nose in correspondence). The 3-parameter search to match 2 pro�lesis replaced by a 1-dimensional minimization.To include more 3D information, we analysed the lateral pro�les used forcentral pro�le extraction. To bring robustness, these left and right curves were8
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6.2Fig. 7. ROC curves of comparison of central pro�les, lateral pro�les and the fusionof central and lateral pro�les, with manual re�nement (automatic DB, 120 persons)averaged to o�er a mean lateral pro�le. Mean lateral pro�les were comparedin the curvature space as described before. As seen in Fig. 7, the lateral pro�lediscrimination power (EER: 10:0%) is similar to what was obtained with thecentral pro�le. Although more speci�c to individuals, the central pro�le oftensu�ers from acquisition troubles in the nose and chin regions. The fusion of thescores from central and lateral pro�le comparisons by simple average broughta clear recognition advantage (EER: 6:2%).
5 ResultsTables of Equal Error Rates (EER) are given below to show the recognitionperformance of the two approaches of subsection 4.1 and 4.2.To see the inuence of the acquisition system, results are provided for themanual and automatic DB limited to 30 people. Tests on the whole automaticDB gave similar results. Figures with (re�ned) and without (auto) manualre�nement allows to estimate the possible improvement of the automatic op-timization procedures present in the 3D comparison methods.The �gures only give general comparison clues. In particular, it is dangerousto summarize the recognition ability by the EER.9



5.1 Surface Matching session1 session2 session1-2automatic DB, auto 9.0 % 9.0 % 13.0 %automatic DB, re�ned 4.5 % 3.25 % 6.0 %manual DB, auto 8.0 % 7.0 % 9.5 %manual DB, re�ned 3.5 % 2.0 % 4.75 %Table 1EER of surface matching for the automatic DB (30 persons) and manual DB, with(re�ned) and without (auto) manual re�nement5.2 Central and Lateral Pro�les session1 session2 session1-2automatic DB, auto 7.25 % 7.75 % 9.0 %automatic DB, re�ned 6.25 % 7.0 % 9.5 %manual DB, auto 4.75 % 6.75 % 7.25 %manual DB, re�ned 2.25 % 3.75 % 6.75 %Table 2EER of the central and lateral pro�les method for the automatic DB (30 persons)and manual DB, with (re�ned) and without (auto) manual re�nementMany reasons decreased recognition performances. They are classi�ed in thethree following subsections.5.3 Error from representationThe representation of each person is currently limited to 3 facial surfacesper session. For the two existing sessions, people were asked to rotate theirhead, implying 3D di�erences (di�erent covering and possible head distorsion).We think from previous experiences that people naturally present themselvesmore consistently when they are asked to pose. Moreover, the database wasacquired completely before being tested. For this, some people are not correctlyrepresented, possibly smiling in some images or wearing glasses. As only one3D representation was used as reference during the tests, the presented causesfor poor representation have a large inuence, as depicted by inter-sessionresults (\session1-2"). 10



5.4 Error from acquisitionThe extraction of 3D information from striped images is not perfect. Eyes andnose typically introduce local errors due to grey and volume disturbances.Spectacles, especially with thick frames, impair surface acquisition in the eyeregions. Bushy or dark moustaches and beards prevent stripe visibility andhence 3D sensing. Since eyes and nose problems are rather local, since theglasses can be taken o� and beards or moustaches are easily localized fromtexture, these problems were not speci�cally addressed till now, although theyexplain a large proportion of errors.5.5 Error from matching3D face comparison is carried out by an optimisation procedure which can faildue to noise, local minima or bad initial parameter values. The importance ofthe incurred errors is visible from the results of matching with and withoutmanual re�nement. A large part of important matching errors can be explainedby acquisition errors.5.6 Comparison of the methodsThe two 3D comparison methods (surface matching and central/lateral pro-�les) give the same level of recognition performance. The surface matchingapproach is more sensitive to matching errors, as can be seen from the di�er-ences between auto and re�ned rows of Table 1. On the contrary, Table 2 showsthe importance of acquisition errors on the performance of the central/lateralpro�les approach (di�erences between automatic DB and manual DB rows).The main advantages of the central/lateral pro�les method are its speed andlow storage needs. The intrinsic normalization based on vertical facial symme-try takes 0.5 second and delivers two pro�les of a few hundred bytes. These canbe matched very rapidly with the reference pro�les of the database (extractedo�-line). The surface matching algorithm takes a mean time of 0.8 second tocompare two 3D representations. This precludes decision methods based onranking or sequence analysis. 3D representations are about 25 Kbyte large.For veri�cation applications, both methods satisfy a time constraint of threeseconds and only consumes a few hundred Kbyte during execution.11



5.7 Comparison with pro�le performance from 2-D imagesThe database also contains color images of pro�le view of the same people.We used a previous approach (see [3]) to extract pro�le contours from thecolor images and compare session2 pro�les with session1 pro�les. The EER of10.5 % is equivalent to what was obtained with the central pro�les extractedfrom the 3-D facial surfaces, outlining the importance of global information inthe pro�les (the 2-D pro�les are indeed much more precise than the pro�lesextracted from 3-D).6 ConclusionsA complete prototype for 3D face recognition has been studied. Facial surfacesare acquired thanks to structured light with the precious advantages of lowcost and quickness. The 3D comparison is carried out by pro�le matching,either globally or more speci�cally for central and lateral pro�les. The personis asked to sit on a chair and center himself in front of the camera. A coupleof seconds su�ce to get a 3-D representation and compare it to the claimedreference.The obtained equal error rates clearly support the motivation for an appli-cation with a cooperative scenario, especially when considering the possibleimprovements to be carried out in the acquisition and representation of people.Background removal, rotation, scale and translation independency, quicknessand infra-red lighting are additional assets which should guarantee the successof a practical application.We intend to complement the facial surface information with a grey level anal-ysis to increase the recognition performance. Acquired in correspondence andwith the same camera, 3D and grey level data allow for viewpoint normaliza-tion of grey levels and grey normalization based on a light source and reexionmodels thanks to 3D. Grey level analysis can also assist 3D comparison andvice versa.References[1] Acheroy, M., Beumier, C., Big�un, J., Chollet, G., Duc, B., Fischer, S., Genoud,D., Lockwood, P., Maitre, G., Pigeon, S., Pitas, I., Sobatta, K., Vandendorpe, L.,Multi-modal person veri�cation tools using speech and images, Proceedings ofthe European Conference on Multimedia Applications, Services and Techniques(ECMAST '96)(1996), 747-761. 12
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