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Abstract

This paper presents automatic face authentication from facial surface analysis. This
geometrical approach was motivated by difficulties encountered when considering
frontal face recognition. Apart from being less sensitive to viewpoint and lighting
conditions, the method exploits information which is complementary to grey level
based approaches, enabling the fusion with those techniques. A 3D acquisition sys-
tem based on structured light and adapted to facial surface capture is presented. It
is cheap and fast while offering a sufficient resolution for face recognition purposes.
The acquisition system and the 3D face comparison algorithm were designed to be
integrated in security applications with cooperative scenario.
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1 Introduction

Biometric measurements receive an increasing interest for security applications
where PIN codes and cards are less desired (due to loss or theft). In cooperative
environments, speech and face modalities are well accepted by individuals but
they still suffer from limited performances. To achieve a sufficient level of
reliability, several modalities (speech, profile, face, 3D) may be combined [1,4].

A previous profile analysis [2] has shown the adequacy of geometrical informa-
tion for automatic person authentication. It takes benefit from the rigidity of
the parts involved (forehead, nose, chin) and the little dependence on makeup
or lighting conditions. This explains the success of many profile works [6,9].
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More geometrical information is taken from a facial 3D description, especially
where grey level features lack as in the chin, forehead and cheek regions. The
analysis can benefit from real 3D measures (no scale or rotation influence).
Depth information also helps segmenting the face from background objects.
Those advantages clearly state the 3D geometrical approach as complementary
to the grey level analysis. Although 3D facial modelling for compression and
synthesis as in videoconferencing [10] or medical applications is not a new field
of interest, 3D facial authentication activities are still weakly addressed [8,14]
in the literature in comparison with frontal or profile developments.

3D capture is usually expensive and slow. We designed a 3D acquisition pro-
totype based on structured light which is adapted to facial surface acquisi-
tion. Its resolution, speed and sufficient facial covering make it appropriate
for practical implementations. The emergence on the market of structured
light systems for 3D face acquisition supports our choice. However, hair and
beard are not properly acquired, and a grey level analysis remains attractive.
Switching the projector on and off is a simple way to get geometrical and grey
level information in alignment from the same hardware equipment.

The next section describes the structured light acquisition system. The hard-
ware choices are motivated and the calibration and 3D extraction procedures
are presented. The acquisition prototype has been tested during the collection
of a 3D database, matter of section 3, which was used later for recognition
experiments. Section 4 introduces two approaches considered to compare 3D
facial representations: a facial surface matching algorithm and a profile match-
ing procedure after intrinsic normalization. Recognition results are presented
in section 5. Section 6 concludes the paper.

2 3D acquisition

2.1 Motiwations for structured light

Among the possible range acquisition systems [11,12], structured light has
emerged as the solution for 3D acquisition in our context. It is based on the
projection of a known light pattern (in our case parallel 'stripes’). The light
pattern deformation, captured by a camera, contains the depth information
of the scene.

Four advantages motivate our choice. First, the additional cost is limited to
a projector and a slide. Secondly, a standard camera is precise enough and
benefits from the high speed of video hardware. A single image with stripes
suffices to recover 3D information. This enables sequence analysis and time in-



tegration. Thirdly, switching the projector on and off allows to acquire volume
and texture information in correspondence. Fourthly, the projector illumina-
tion reduces the influence of ambient light. In particular, near infra-red light
is more discreet and does not dazzle the individual.

The drawbacks of a structured light system are its relative bulkiness and its
limited field of depth due to the camera and projector lenses.

2.2 Hardware choices

To keep investments low, we opted for off-the-shelf components. We use a
standard CCD black and white camera plugged into a 768x576 pixels image
digitiser. A 24x36mm projector projects its light through a slide coding the
stripe indices in the thickness (thin or thick) of neighbouring stripes.

2.3 Set-up

The camera and the projector have their optical axes co-planar to reduce the
number of parameters to be calibrated. Both optical systems have a limited
span and depth of focus; the field of view covers about 30x40 cm at 1m40
from the camera/projector head, with a depth of focus of about 40 cm. This
is sufficient for sitting attitudes in cooperative situations.

2.4 Calibration

The first calibration step consists in rough measurements of the camera and
projector distance and relative angle. Rough values are also given to parame-
ters depending on the pixel size of the camera/digitiser pair as well as slide and
lenses characteristics. Then automatic refinement is performed by presenting
a square object in several orientations and trying to make the 3D corners be
at the vertices of a planar square of known size. Typical relative errors on the
estimated square side is 2 %.

2.5 3D extraction

Automatic 3D extraction is done by stripe detection and labelling. From each
point of a stripe and its label, triangulation allows for X, Y and Z estimations.



Fig. 1. a) Striped image b) Stripe detection and thickness (white=thin, black=thick)

Stripe detection is carried out by line following helped by the linear nature
of the light pattern. Stripe thickness is estimated from the grey level profiles
across the stripes. Local thickness distribution of neighbouring stripes helps
initiating stripe labeling from the known thickness distribution of the slide.
The global coherence of this labeling is checked against normal ordering and
spacing of stripes to detect and solve local inconsistencies (commonly found
in abrupt transitions of the nose and chin) and propose labels in non-labelled
areas (for instance due to grey level troubles in eyes or beard regions). The
label of the stripes and the x, y image position of points along the stripes are
converted into X, Y, Z thanks to calibrated parameters.

This implementation is very fast (half a second on a Pentium 200) while
offering sufficient resolution for recognition purposes. A comfortable covering
of the face is possible, nearly from ear to ear and including the throat. Stripes
projected on the background are normally out of focus and do not complicate
face extraction. Noses and eyes often raise minor problems. Beard and glasses
induce large errors if the beard is bushy and the glasses have thick frames.

3 3D database

In order to test the performances of the acquisition system and of the com-
parison approaches, we prepared a database with the following criteria.

First, a sufficient number of individuals had to be acquired. We started with
120 persons. Secondly, we selected people likely to stay in our reach to get long
term statistics from sessions separated by several months. Thirdly, different
problems encountered in the cooperative scenario were taken into account
(spectacles, smiles, head rotation).

Until now two sessions with the same 120 individuals have been completed.
People were asked to sit and to look at the camera. We took three shots per
session, corresponding to central, limited left/right and up/down poses.



Fig. 3. 3D reconstructions from left image of Fig. 2

From these sessions, we built up two databases. The first one, called the auto-
matic DB, used the automatic program described in subsection 2.5 to get the
3D representations of all the individuals. For the second database, called the
manual DB, the 3D extraction process was performed interactively by click-
ing initial points on the stripes, assigning them a thin or thick attribute. Only
the first 30 individuals were processed manually, delivering sufficient data to
analyse the possible enhancement of a better acquisition program.

Fig. 2 shows 4 images of the same person, from the two sessions. Fig. 3 repre-
sents 3D reconstructions of the automatic DB from different points of views
corresponding to the left image of Fig. 2.

Running the 3D reconstruction algorithm (see section 2.5) on the whole database
made us confident in the overall quality of stripe following, labelling and back-
ground independence. However, it highlighted possible problems encountered
in bushy beards, glasses, nose and eyes, by order of importance.



4 3D face comparison

When we began this 3D face recognition project, in 1995, the related litterature
was poor. Several studies [8,16,13] concentrated on curvature analysis. Our
own tests in this direction were unsatisfactory, due to the limited quality of
the range data (noise in eyes, nose or mouth).

We preferred to analyse the 2D (striped) images in order to postpone the time
consuming 3D conversion. Although studies were carried out in that direction
by some researchers [7,15], coping with the influence of the viewpoint on the
shape of the stripes seemed too difficult. Only the prominence of the nose led
to its localisation.

We thus came back to range processing, looking for characteristics to reduce
the 3D data to a set of features easily and quickly compared. We first estimated
the prominence of the nose relative to points of the cheeks located at a given
distance from the nose tip. As second feature, the nose length was measured
by localising the nose tip and the nose saddle (between the eyes).

Although the approach was successful, the nose seems to be the only facial
part providing robust geometrical features for limited effort. Mouthes and eyes
may involve disturbances. Foreheads, cheeks and chins don’t clearly exhibit
reference points for normalisation. We abandoned feature extraction and con-
sidered the global matching of the facial surface.

4.1 Surface matching

The surface matching approach consists in finding some distance measure
which quantifies the difference between two 3D surfaces and in tuning the set
of parameters (translations and rotations) to minimize the distance measure.

At most 15 profiles (-7..+7, see Fig. 4) are extracted from each facial surface by
intersection with parallel planes spaced with 1 cm. Each pair of corresponding
profiles is compared to issue a profile distance: the area between the two
profiles divided by the arc length. The average of these profile distances of all
corresponding profile pairs is the global error which has to be minimised.

The minimization of the global distance is performed by an Iterative Con-
ditional Mode optimization, which tunes each parameter (3 rotations and 3
translations) on its own, one after the other. The minimization is organized as
cycles of ICM, separated by the reduction of each parameter search space. The
initial translation parameters are based on the rough localization of the nose
tip. The planes are initially vertical and oriented according to the left/right



Fig. 4. a) Profiles from two 3D representations with noses already in correspondence.
b) Profiles of the representations after surface matching

orientation obtained from the cheeks. The last orientation parameter is ini-
tialized from the up/down angle obtained from the forehead and nose. These
starting conditions closer to the solution avoid many local minima and speed
up the optimization by earlier reduction of the search space.

Some recognition results of this automatic surface matching procedure are
shown in Fig. 5. The residual false rejection rates for large false acceptance
rates reveals local minima in the automatic optimization either due to bad
initial parameter values or important noise in the input data. Beard, glasses
and nose discontinuities are the most common problems. Manual refinement
from visual profile fitting avoids many local minima.

Although the approach and the computations were optimized, the algorithm
is still slow: about 1 second to compare two facial surfaces.

4.2 Central and lateral profiles

In order to speed up the facial surface comparison, we split the 6-dimensional
optimization into a 3-dimensional normalization based on facial symmetry
followed by a 3-dimensional profile comparison (realized by a 1-dimensional
curvature matching). Refer to [5] for a similar approach which extracts the
central profile by looking for the vertical symmetry axis of gaussian curvature
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Fig. 5. ROC curves of 3D surface matching for the manual database, with (Manual)
and without (Automatic) manual tuning (see text)
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Fig. 6. Central and lateral profiles after intrinsic normalization

values of the facial surface.

Under the assumption of vertical facial symmetry, we automatised central
profile extraction by looking for the profile with maximal protrusion (due to
the nose) and with maximal symmetry of left and right profiles parallel and
3 cm away from it. This optimum search is quick as it only depends on three
parameters (one translation and 2 rotations).

The automatically extracted central profiles were compared in the curvature
space, by transforming each two-dimensional profile into the one-dimensional
local curvature values along this profile. In the curvature space, values can
be compared directly, dealing with only one shift parameter (for instance to
bring the nose in correspondence). The 3-parameter search to match 2 profiles
is replaced by a 1-dimensional minimization.

To include more 3D information, we analysed the lateral profiles used for
central profile extraction. To bring robustness, these left and right curves were



ROC Curves for Central and Lateral Profiles
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Fig. 7. ROC curves of comparison of central profiles, lateral profiles and the fusion
of central and lateral profiles, with manual refinement (automatic DB, 120 persons)

averaged to offer a mean lateral profile. Mean lateral profiles were compared
in the curvature space as described before. As seen in Fig. 7, the lateral profile
discrimination power (EER: 10.0%) is similar to what was obtained with the
central profile. Although more specific to individuals, the central profile often
suffers from acquisition troubles in the nose and chin regions. The fusion of the
scores from central and lateral profile comparisons by simple average brought
a clear recognition advantage (EER: 6.2%).

5 Results

Tables of Equal Error Rates (EER) are given below to show the recognition
performance of the two approaches of subsection 4.1 and 4.2.

To see the influence of the acquisition system, results are provided for the
manual and automatic DB limited to 30 people. Tests on the whole automatic
DB gave similar results. Figures with (refined) and without (auto) manual
refinement allows to estimate the possible improvement of the automatic op-
timization procedures present in the 3D comparison methods.

The figures only give general comparison clues. In particular, it is dangerous
to summarize the recognition ability by the EER.



5.1 Surface Matching

sessionl | session? | sessionl-2

automatic DB, auto 9.0 % 9.0 % 13.0 %
automatic DB, refined | 4.5 % | 3.25 % 6.0 %
manual DB, auto 8.0 % 7.0 % 9.5 %
manual DB, refined 3.5 % 2.0 % 4.75 %

Table 1
EER of surface matching for the automatic DB (30 persons) and manual DB, with
(refined) and without (auto) manual refinement

5.2 Central and Lateral Profiles

sessionl | session? | sessionl-2

automatic DB, auto 725% | 775 % 9.0 %

automatic DB, refined | 6.25 % | 7.0 % 9.5 %
manual DB, auto 475 % | 6.75 % 7.25 %
manual DB, refined 225% | 3.7 % 6.75 %

Table 2
EER of the central and lateral profiles method for the automatic DB (30 persons)
and manual DB, with (refined) and without (auto) manual refinement

Many reasons decreased recognition performances. They are classified in the
three following subsections.

5.3  FError from representation

The representation of each person is currently limited to 3 facial surfaces
per session. For the two existing sessions, people were asked to rotate their
head, implying 3D differences (different covering and possible head distorsion).
We think from previous experiences that people naturally present themselves
more consistently when they are asked to pose. Moreover, the database was
acquired completely before being tested. For this, some people are not correctly
represented, possibly smiling in some images or wearing glasses. As only one
3D representation was used as reference during the tests, the presented causes
for poor representation have a large influence, as depicted by inter-session
results (“sessionl-2").
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5.4 Error from acquisition

The extraction of 3D information from striped images is not perfect. Eyes and
nose typically introduce local errors due to grey and volume disturbances.
Spectacles, especially with thick frames, impair surface acquisition in the eye
regions. Bushy or dark moustaches and beards prevent stripe visibility and
hence 3D sensing. Since eyes and nose problems are rather local, since the
glasses can be taken off and beards or moustaches are easily localized from
texture, these problems were not specifically addressed till now, although they
explain a large proportion of errors.

5.5 Error from matching

3D face comparison is carried out by an optimisation procedure which can fail
due to noise, local minima or bad initial parameter values. The importance of
the incurred errors is visible from the results of matching with and without
manual refinement. A large part of important matching errors can be explained
by acquisition errors.

5.6 Comparison of the methods

The two 3D comparison methods (surface matching and central/lateral pro-
files) give the same level of recognition performance. The surface matching
approach is more sensitive to matching errors, as can be seen from the differ-
ences between auto and refined rows of Table 1. On the contrary, Table 2 shows
the importance of acquisition errors on the performance of the central/lateral
profiles approach (differences between automatic DB and manual DB rows).

The main advantages of the central/lateral profiles method are its speed and
low storage needs. The intrinsic normalization based on vertical facial symme-
try takes 0.5 second and delivers two profiles of a few hundred bytes. These can
be matched very rapidly with the reference profiles of the database (extracted
off-line). The surface matching algorithm takes a mean time of 0.8 second to
compare two 3D representations. This precludes decision methods based on
ranking or sequence analysis. 3D representations are about 25 Kbyte large.

For verification applications, both methods satisty a time constraint of three
seconds and only consumes a few hundred Kbyte during execution.
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5.7  Comparison with profile performance from 2-D images

The database also contains color images of profile view of the same people.
We used a previous approach (see [3]) to extract profile contours from the
color images and compare session2 profiles with sessionl profiles. The EER, of
10.5 % is equivalent to what was obtained with the central profiles extracted
from the 3-D facial surfaces, outlining the importance of global information in
the profiles (the 2-D profiles are indeed much more precise than the profiles
extracted from 3-D).

6 Conclusions

A complete prototype for 3D face recognition has been studied. Facial surfaces
are acquired thanks to structured light with the precious advantages of low
cost and quickness. The 3D comparison is carried out by profile matching,
either globally or more specifically for central and lateral profiles. The person
is asked to sit on a chair and center himself in front of the camera. A couple
of seconds suffice to get a 3-D representation and compare it to the claimed
reference.

The obtained equal error rates clearly support the motivation for an appli-
cation with a cooperative scenario, especially when considering the possible
improvements to be carried out in the acquisition and representation of people.
Background removal, rotation, scale and translation independency, quickness
and infra-red lighting are additional assets which should guarantee the success
of a practical application.

We intend to complement the facial surface information with a grey level anal-
ysis to increase the recognition performance. Acquired in correspondence and
with the same camera, 3D and grey level data allow for viewpoint normaliza-
tion of grey levels and grey normalization based on a light source and reflexion
models thanks to 3D. Grey level analysis can also assist 3D comparison and
vice versa.
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