
Automatic 3D Face AuthenticationCharles Beumier and Marc AcheroyRoyal Military Academy, Signal & Image Centre (c/o ELEC)Avenue de la Renaissance, 30 B1000 Brussels, Belgiumfbeumier, Marc.Acheroyg@elec.rma.ac.behttp://www.sic.rma.ac.be/index.htmlAbstract. This paper presents automatic face authentication based onfacial surface analysis. This geometrical approach was motivated by di�-culties encountered when considering frontal face recognition. Above theadvantages of being independent of viewpoint and lighting conditions,the method exploits information which is complementary to grey-levelbased approaches, enabling the combination with those techniques. A3D acquisition system based on structured light and adapted to facialsurface capture is presented. It is cheap and fast while o�ering a su�-cient resolution for face authentication purposes. The acquisition systemand the 3D face comparison algorithm were designed to be integrated insecurity applications with cooperative scenario.1 IntroductionBiometric measurements receive an increasing interest for security applicationswhere PIN codes and cards are less desired (due to loss or theft). In coopera-tive environments, speech and face modalities are well accepted by individualsbut they still su�er from limited performances. To achieve a su�cient level ofreliability, several modalities (speech, pro�le, face, 3D) may be combined [1, 2].A previous pro�le analysis [3] has shown the adequacy of geometrical infor-mation for automatic person authentication. It takes bene�t from the rigidity ofthe parts involved (forehead, nose, chin) and the little dependence on makeupor lighting conditions. This explains the success of many pro�le works [4{6].More geometrical information is taken from a facial 3D description, especiallywhere grey-level features lack as in the chin, forehead and cheek regions. Theanalysis can bene�t from real 3D measures (no scale or rotation in
uence). Depthinformation also helps segmenting the face from background objects. Those ad-vantages clearly state the 3D geometrical approach as complementary to thegrey-level analysis. Although 3D facial modelling for compression and synthesisas in videoconferencing [7] or medical applications is not a new �eld of interest,3D facial identi�cation activities are still poorly addressed [8, 9] in the literaturein comparison with frontal or pro�le developments.3D capture is usually expensive and slow. We designed a 3D acquisitionprototype based on structured light which is adapted to facial surface acquisition.Its resolution, speed and su�cient facial cover for a low price make it appropriate



2for practical implementations. The emergence on the market of structured lightsystems for 3D face acquisition supports our choice. However, hair and beard arenot properly acquired, and a grey-level analysis remains attractive. Switching theprojector on and o� is a simple way to get geometrical and grey-level informationin alignment from the same hardware equipment.The next section describes the structured light acquisition system. The hard-ware choices are motivated and the calibration and 3D extraction procedures arebrie
y explained as they are out of the scope of this article. Section 3 reviewsthree di�erent approaches considered to compare 3D facial representations: adirect use of striped images, a feature extraction approach and a facial surfacematching algorithm. Section 4 presents the results of the surface matching ap-proach. Section 5 describes the strategy and improvements to be adopted tobring the current system to a practical implementation. Section 6 concludes thepaper.2 3D Acquisition2.1 Motivations for structured lightAmong the possible range acquisition systems [10], structured light has emergedas the solution for 3D acquisition in our context. It is based on the projection ofa known light pattern (in our case parallel 'stripes'). The light pattern deforma-tion, captured by a camera, contains the depth information of the scene. Fouradvantages motivate our choice.First, the additional cost is limited to a projector and a slide. Commoncameras are precise enough to get most of the geometrical information of faces.Secondly, a standard camera bene�ts from the low price and high speed ofvideo hardware. A single image with stripes su�ces to recover 3D information.This enables sequence analysis and time integration.Thirdly, switching the projected pattern on and o� is a cheap method toacquire two complementary modalities in correspondence.Fourthly, the projector illumination reduces the in
uence of ambient light. Inparticular, near infra-red light is more discreet and does not dazzle the individual.The drawbacks of a structured light system are its relative bulkiness and itslimited �eld of depth due to the camera and projector lenses.2.2 Hardware choicesTo keep investments low, we opted for o�-the-shelf components.We use a standard CCD black and white camera plugged into a 768x576pixels image digitiser. A 24x36mm projector projects its light through a slidecoding the stripe indices in the thickness of neighbouring stripes.



32.3 Set-upThe camera and the projector have been �xed on a rail, keeping their opticalaxes co-planar to reduce the number of parameters to be calibrated. Both opticalsystems have a limited span and depth of focus; the �eld of view covers about30x40 cm at 1m40 from the camera/projector head, with a depth of focus ofabout 40 cm. This is su�cient for sitting attitudes in cooperative situations.2.4 CalibrationThe �rst calibration step consists in rough measurements of the camera andprojector distance and relative angle. Rough values are also given to parametersdepending on the pixel size of the camera/digitiser pair as well as slide andlenses characteristics. Then automatic re�nement is performed by presenting asquare object in several orientations and trying to make the 3D corners be atthe vertices of a planar square of known size. This calibration procedure has tobe done once, as long as the camera and projector settings are not modi�ed.2.5 3D extractionAutomatic 3D extraction is done by stripe detection and labelling. From eachpoint of a stripe and its label, triangulation allows for X, Y and Z estimations.Stripe detection is carried out by line following helped by the linear natureof the slide. Stripe thickness is estimated from the grey-level pro�les accross thestripes. Local thickness distribution of neighbouring stripes helps initiating stripelabeling from the known thickness distribution of the slide. The global coherenceof this labeling is checked against normal ordering and spacing of stripes to detectand solve local inconsistencies (commonly found in abrupt transitions of the noseand chin) and propose labels in non-labelled areas (for instance due to grey-leveltroubles in eyes or beard regions). The output is a set of ordered points alongthe stripes from which a mesh is easily derived.This implementation is very fast (less than 1 second on a Pentium 200)while o�ering su�cient resolution for recognition purposes. For an nearly frontalposture, a comfortable cover of the face is acquired, nearly from ear to ear andincluding the throat. Stripes projected on the background are normally out offocus and do not complicate face extraction. Noses and eyes often raise minorproblems. Beard and glasses induce only limited errors except if the beard isbushy and the glasses have thick frames.3 3D Face Comparison3.1 Analysis from Striped ImagesOne interesting 3D comparison approach is to get information directly from the2D (striped) images in order to postpone the time consuming 3D conversion.Although studies were carried out in that direction by some researchers [11, 12],coping with the in
uence of the viewpoint on the shape of the stripes seemedtoo di�cult. Only the prominence of the nose led to its localisation.
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Fig. 1. A striped image of a face and its 3D reconstruction from pro�le3.2 3D Feature ExtractionWork has been carried out in looking for discriminant (di�erent among people)and reproducible (stable for a given person) features. The main objective was toreduce the 3D data to a set of features easily and quickly compared.We estimated the prominence of the nose relative to points of the cheekslocated at a given distance from the nose tip. This led to stable values for eachperson (variations less than 1 mm) with a span of more than 5 mm among 10individuals.The nose length was also measured by localising the nose tip and the nosesaddle (between the eyes). Although this measure was less precise, it broughtinformation thanks to the large variability of the nose length among individuals.However, the nose seems to be the only facial part providing robust geo-metrical features for limited e�ort. Mouthes and eyes may involve disturbances.Foreheads and chins, interesting rigid parts, don't clearly exhibit reference pointsfor normalisation. We abandoned feature extraction and considered the globalmatching of the facial surface.3.3 Surface MatchingThe global matching approach consists in �nding some distance measure whichquanti�es the di�erence between two 3D surfaces and in tuning the set of pa-rameters (translations and rotations) so that the distance measure is minimal.The problem of the global approach is its large computational load. Sincethe face surfaces are captured from di�erent points of view, we must considerthe �ve degrees of freedom (3 rotations and 2 translations). Also, a geometricalcorrespondence must be established between the 2 surfaces to be compared.



5To solve the correspondence problem, parallel planes, with an interdistanceof 1 cm, are used to extract at most 15 (-7cm .. +7cm) pro�les (see Fig. 2).Those planes are initially vertical and centered on the nose tip.
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Fig. 2. a) Pro�les from two 3D representations with noses already in correspondence.b) Pro�les of the representations after surface matchingFor di�erent values of the 5 parameters, each pro�le is compared with thecorresponding pro�le of the other face surface to issue a pro�le distance. Theglobal distance, which is computed as the sum of the individual pro�le distances,has to be minimised. To reduce the number of comparisons, we successfully madethe optimisation iterative, tuning one parameter at a time, and organising cyclesof optimisations with decreasing intervals of search. On the average, 10 cycles of



6successive parameter optimisations were necessary, what took about 5 secondson a Pentium 200. See the results in Fig. 2b.Although the approach was validated by a large number of successful exper-iments, the optimisation often falls in a local minimum, either due to bad ini-tial parameter values or incorrect input data (noise in the 3D representations).Beard, glasses and nose discontinuities are the most common problems.4 ResultsIn order to test the 3D acquisition system and to estimate the performance ofthe 3D analysis, a database of 120 persons was recorded. Each individual wasasked to sit on a chair and to look in the direction of the camera. Three shotswere taken with limited orientation changes (about 10o) of the head.Running the 3D reconstruction algorithm (see section 2.5) on the wholedatabase made us con�dent in the overall quality of stripe following, labelling andbackground independence. However, it highlighted the problems encountered inbushy beards, glasses, nose and eyes, by order of importance. The quality of the3D capture was later supported by recognition experiments.To measure the recognition performance of the 3D information, we �rst ap-plied an automatic version of our surface matching algorithm, using the residualdistance after matching as a similarity measure of the people. Comparing 24people to the 120 people of the database, 72 client and 25848 impostor testswere carried out, leading to an EER (Equal Error Rate) of 16% (Fig. 3). Wethen rejected 1 person who su�ered from a clear 3D acquisition problem (due tobeard and glasses). Finally, we manually tuned the automatic surface matchingfor clients and best impostors to reduce the in
uence of local minima in theoptimisation process. The obtained EER of 4% (see Fig. 3) is very encouraging,considering possible improvements of the acquisition system and the foreseeninclusion of more representations. Additional client tests out of the remaining96 persons and results on a second session of three presentations con�rmed thisEER.5 StrategyTo speed up the surface matching process and reduce the importance of localminima, we propose the following strategy.First, rough values of the angles and o�sets are estimated.Secondly, the natural vertical symmetry of faces allows for a simpler andquicker normalisation of three parameters. The parameter values, obtained bythis intrinsic normalisation, can be saved with the 3D data �le.Thirdly, the remaining 2 parameters are estimated by surface matching. Theresidual distance is then used as Acceptance/Rejection criterium. Possibly, morediscrimination power from the 3D information will be achieved by comparing thenormalised 3D data locally or by extracting normalised features.
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4.0Fig. 3. ROC curves of 3D surface matching for part of the database, with (Manual)and without (Auto) manual tuning (see text)Finally, aligned grey-level information, either measured between the stripesor from an acquisition without projection, should increase the performances byits complementarity with 3D information. That grey-level support will be crucialfor individuals with facial hair leading to 3D capture di�culties.6 ConclusionsA complete system for automatic 3D face authentication has been presented.The 3D acquisition equipment, based on structured light, was adapted tofacial surface acquisition to give appropriate resolution with low cost hardwarein cooperative scenarios. Its speed and the adequacy to work with near infra-redprojection are additional assets for practical implementations.We conclude from the current results that surface matching implementedwith parallel pro�les is a valid way to recognise people from their face surface.The discrimination power seems very high, especially if we foresee the possibleimprovements of the acquisition system and the further exploitation of nor-malised data (feature extraction or local comparison).The proposed strategy for face surface matching also meets the speed andmemory requirements of classical security applications. Other potential bene-�ts with small additional e�orts such as 3D and grey-level combination or 3Dtemporal analysis makes the system a challenging face identi�er.
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