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Abstract

This paper presents automatic face authentication based on facial surface
analysis. The success of a previous profile-based approach, exclusiyely rel
ing on geometrical features of the external contour, led us to considerlthe f
facial surface. This motivation was further supported by the independence
of viewpoint and lighting conditions of 3D information. The geetny also
carries information which is complementary to grey-level based approaches,
supporting the combination with those techniques. The facial surdazagpr

tured by a system based on structured light and adapted to face to deliver
a cheap, fast and sufficiently precise solution. Typical applications concern
security in cooperative situations.

1 Introduction

More and more developments in the field of security concentrate on biereetutions
in order to get rid of PIN codes and cards which can be stolen or lost. Anherpissible
clues, speech and face modalities receive the largest acceptance from the uskey, but t
still lack reliability in real situations. In order to bring robusteesith limited develop-
ment efforts, several modalities (speech, profile, face and 3D) can be combjrigd [

A previous profile analysis [3] has shown the adequacy of geometricainiattion
for automatic person authentication. It takes benefit from the rigiditiyeoparts involved
(forehead, nose, chin) and the little dependence on makeup or lightingioasd This
explains the success of many profile works [4].

More information than the single profile is to be found in the etfacial surface. Par-
ticularly, the chin, nose, forehead and cheek regions will bring impoctaas, precisely
where grey-level features lack. Real 3D measures will help solving scale tatibno
dependence typically encountered in 2D analysis. Depth segmentation\isabviay
to highlight the face out of background objects. Those advantages cléadytise 3D
geometrical approach as complementary to the grey-level analysis.

Although 3D facial modelling for compression and synthesis as in vidgecencing
[5] or medical applications is not a new field of interest, 3D facial identificedctivities
are still poorly addressed [6, 7] in the literature in comparison \vidmtal or profile
developments.

The success of the 3D approach largely depends on the quality and cost @ the 3
data. We designed an active 3D acquisition prototype based on strucgghredtiich is
adapted to facial surface acquisition. Its resolution, high speed and euffiacial cover
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for a low price make it appropriate for practical implementations. Thecsedl solution
also allows discretion thanks to infrared lighting and texture captuekgnment with 3D
by switching the projector on and off.

The next section describes the structured light acquisition systene. h@trdware
choices are motivated and the calibration and 3D extraction procedures arg éxiefl
plained as they are out of the scope of this article. Section 3 reviewslitberent ap-
proaches we considered to compare 3D facial representations: a direct uspesf str
images, a feature extraction approach and two facial surface matching alggrahm
globally matching the facial surfaces and the second using the symmeltwy faice. Sec-
tion 4 concludes the paper.

2 3D Acquisition

2.1 Motivationsfor structured light

Among the possible range acquisition systems [8], passive stergodaek were rejected
due to their slowness and problems encountered in the non-texturedahegace. On
the other hand, structured light techniques, actively projecting a ga#erp (in our case
parallel 'stripes’), capture depth information from the deformatibthe light pattern.
Four reasons supported the structured light solution.

First, the additional cost is limited to a projector and a slide. Comg@meras are
precise enough to get most of the geometrical information of faces.

Secondly, a standard camera benefits from the low price and high speed of video
hardware. With an appropriate slide, a single image with stripes suticesover 3D
information. This enables 3D sequence analysis and time integration.

Thirdly, switching the projector on and off is a simple method to &eqhe geometry
and texture in correspondence.

Fourthly, the projector illumination reduces the influence of ambight nd allows
dark situations. In particular, near infra-red light is more discreet aed dot dazzle the
individual.

The bulkiness of the structured light system is not a drawback comparstgreo
techniques which use a second camera. Other range techniques such as depthifrom mo
or from shading, although using one camera, are more complex and sheMindited
field of depth of structured light systems due to the camera and projent®s constrains
object or subject positioning, but automatically hides out-of-foackground.

2.2 Hardwarechoices

To keep investments low, we opted for off-the-shelf components.

A standard CCD black and white camera is plugged into a 768x576 pixelgidigg
tiser. A 24x36mm projector is used as light source. The slide is madkass$, for good
mechanical stability. The pattern is composed of parallel stripes of ditfénekness
(either thick or thin) to code the identity of each stripe in the thickrgistribution of
neighbouring stripes. The solution is quicker, simpler and cheaperctianor sequen-
cial pattern encoding.
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Figure 1: A typical image used for calibration

2.3 Set-up

The camera and the projector have been fixed on a rail. They can be both rotated ar
one axis, but their optical axes are kept co-planar. This reduces the nundadibcdition
parameters.

Both optical systems have a limited span and depth of focus. We choss tensork
at 1m40 from the camera/projector head; the field of view covers about 30x4thdm
the depth of focus is about 40 cm. This is sufficient for sitting atgtiin cooperative
situations.

2.4 Calibration

The first calibration step consists in roughly measuring the distardtectative angle of
the camera and projector. Rough values are also given to parameters depenitiag on
pixel size of the camera/digitiser pair as well as slide and lenses characteristics

Then a square object of known size (see Fig. 1) is presented 5 to 10 timiéeiant
positions, anywhere in the field of view. The four corners are extraatddorresponding
3D vertices are derived. An automatic procedure refines calibration paramebeisgo
the four vertices from each image in relative 3D positions coherent witkvkrinterdis-
tances and planarity. This calibration procedure has to be done once, as tbagasiera
and projector settings are not modified.

2.5 3D extraction

Automatic 3D extraction from striped image is done by stripe detediud labelling.
Each point of a stripe gives two coordinates which are converted, thartke tstripe
label, into X, Y and Z estimations by triangulation, using the calibraiarameters.
Stripe detection is carried out by line following helped by the lineaureabf the
slide. Grey-level profiles across the stripes allows to classify eagiests thick or thin.
Thickness distribution of neighbouring stripes gives initialpgtiabelling thanks to the
known thickness distribution of the slide. This initial labelisgchecked against normal
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Figure 2: A striped image of a face and its 3D reconstruction from profil

ordering and spacing of stripes to solve local inconsistencies (comrfamig in abrupt
transitions of the nose and chin) and propose labels in non-labelled (foe&sstance
due to grey-level troubles in eyes or beard regions). The outpusét of ordered points
along the stripes from which a mesh is easily derived.

This implementation is very fast (less than 1 second on a Pentium 20i@)e¥faring
sufficient resolution for recognition purposes as we will see. For alynontal posture,
a comfortable cover of the face is acquired, nearly from ear to ear and inclieitigrbat.
Background objects do not confuse face extraction, as projected stripesrarally out
of focus on such objects. Typical problems concern noses and eyes which isfteb d
the visibility of stripes. Bushy or dark beards and glasses with ti&kes impair stripe
detection in the concerned regions but grey-level support will beflleipthose areas.

2.6 Database

In order to test the acquisition system and to later estimate the perfoenudirthe 3D
analysis, a database of 120 persons was recorded. Each individual was asked t s
chair and to look in the direction of the camera. Three shots were takentigpbsture
changes (about)® up/down or left/right orientation changes).

Running the 3D reconstruction algorithm (see section 2.5) on thdewdettabase
made us confident in the overall quality of stripe following, labgjlamd background in-
dependence. However, it highlighted the problems encountered in bustug bglaisses,
nose and eyes, by order of importance. The quality of the 3D capture wasugiported
by recognition experiments.
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3 3D Face Comparison

3.1 Analysisfrom Striped I mages

We first analysed the 3D information directly from stripe deformapcgsent in the 2D
images, without performing the explicit 3D conversion step which gores time and
requests calibration. Similar approaches are part of the studies carrieyl soine re-
searchers [9, 10], but the specificity of the face makes it inappropriate éomplete
analysis, mainly due to the influence of the viewpoint on the shapleeo$tripes. Only
the prominence of the nose and the chin led to their own localisation.

3.2 3D Feature Extraction

Concluding from the previous section that the 3D extraction was negdedanefit from
independence of volume information relative to rotation and scale, viketbfor discrim-
inant (different among people) and reproducible (stable for a given peisatures. The
description in terms of features synthesizes the 3D data into a more corapeztenta-
tion, leading to an easier and quicker comparison. Also, feature by featuysiaredses
development and control during recognition.

The prominence of the nose was estimated relative to points of the cloegited at
a given distance from the nose tip. Among 10 individuals, the valigge stable for each
person (variations less than 1 mm) although spreading with a span laages tmm.

The nose length was measured by localising the nose tip and the noke(batddeen
the eyes). Although this measure was less precise, it brought infomtatanks to the
large variability of the nose length among individuals.

However, the nose seems to be the only facial part providing robustefeioal fea-
tures for limited effort. Mouthes and eyes may involve disturbancegheads and chins,
interesting rigid parts, don'’t clearly exhibit reference points fanmalisation.

We abandoned feature extraction and considered the global matching of thle faci
surface. The first motivation was to completely normalise the two 3Desgmtations to
be compared. A second objective was to study the surface similarity afteaiisation
as a possible acceptance or rejection criterium.

3.3 Global Surface Matching

The global matching approach consists in finding some distance measahequintifies
the difference between two 3D surfaces and in tuning the set of parametestafitars
and rotations) so that the distance measure is minimal.

The problem of the global approach is its large computational load. $iectace
surfaces are captured from different points of view, we must considdivthdegrees of
freedom (3 rotations and 2 translations). Also, a point to pointespwndence must be
established between the 2 surfaces to be compared.

To solve the correspondence problem, parallel planes, with an intelcbBstéii cm,
are used to extract at most 15 (-7cm .. +7cm) profiles (see Fig. 3). To maidadial
surfaces, the corresponding profiles are compared two by two to isswudile pistance
based on the area separating the profile pairs. The global distance, wbichpsited as
the sum of the profile pair distances, is minimised by tuning the &rpaters. To reduce
the number of comparisons, the minimisation is made iterative, guoire parameter
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Figure 3: a) Profiles from two 3D representations with noses already iasgmndence.
b) Profiles of the representations after surface matching

at a time, and organising cycles of minimisations with decreasing search spadbe
average, 10 cycles of successive parameter optimisations were necessaryolwhbotd
5 seconds on a Pentium 200. See the results in Fig. 3b.

Although the approach was validated by a large number of successful eepésim
the optimisation sometimes falls in a local minimum, either due to biidli parameter
values or noise in the 3D data (typically due to beard, glasses and rstisebdnces).

To measure the recognition performance of the 3D approach, we applied amsdiato
version of the surface matching algorithm, using the residual distafteematching as
a similarity measure between people. Comparing the first 30 people dathbase and
rejecting 3 individuals due to clear 3D acquisition problems (beard andagg81 client
and 3159 impostor tests were carried out, leading to an EER (Equal Eatey & 14.5%
(Fig. 4). Then, we manually refined the surface matching for clients andrbpsstors
to reduce the influence of local minima in the optimisation processobtened EER of
4.5% (see Fig. 4) is very encouraging, considering that the 3 shotstakene from dif-
ferent angles and that only one shot was used as reference to take the acceptanae/rejecti
decision. Additional client and impostor tests out of the remaininge&d8ons and results
on a second session of three presentations confirmed this EER.

3.4 Facial symmetry

As presented in the previous section, surface matching suffers frogha&bmputational
load. Several possibilities can improve the timing figures.



British Machine Vision Conference 7

ROC Curves for Global Surface Matching
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Figure 4: ROC curves of 3D surface matching for part of the database,Méttu@l) and
without (Automatic) manual tuning (see text)

First, refined initial estimates of the parameters help to reduce the searctosfiaze
related parameters. These initial estimates must be robust enough tdoabichinima.

Secondly, the transitivity of relative translation and orientatiouegalcan be used.
For instance, knowing the relative positioning between references othe person by
an off-line procedure, the relative positioning of a test representatith one reference
gives good initial estimates of relative positioning with other refeesn

Thirdly, the parameter set may sometimes be divided into subsets sptirsepa-
rately. The high-dimensional search space is then replaced by two low-dimalsearch
spaces. In our case, the vertical symmetry of the face allows for a first risatiah, in-
trinsic to the face, and depending on three parameters (two rotations amcoslation).
The remaining two parameters are tuned when the comparison with anotreseejar
tion takes place.

Until now, we have concentrated research on this third possibilityreMwecisely,
three parallel, mainly vertical planes are used to extract profiles from trad 2irepre-
sentation to be compared. The central profile passes through a rougbdtioaliof the
nose tip and the two lateral profiles are 3 cm away from it. The horizoraashation,
Left/ Right rotation and tilt rotation parameters are tuned to maxinhisesimilarity of
the lateral profiles and the prominence of the central profile.

Although the face is not perfectly symmetrical, this algorithm leadskdui(about
0.5 second on a pentium 200) to a clear optimum. Moreover, this itrapgimisation
can be done off-line for the database representations and once for tagengtattion to be
recognised. Effective 3D comparison then only concerns the remainingaramngters,
the vertical translation and Up/Down rotation.

For assessment of this normalisation procedure, automatically extracteal geat
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ROC Curves for Central Profile
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Figure 5: ROC curves for recognition based on central profile automatiestitpcted,
rejecting bad quality 3D acquisitions and with manual refinement

files were compared two by two, measuring the variance of the local angézatitfe
between the profiles for several offsets. This stands for the remairénglation and
rotation parameter search.

In a first experiment, all acquisitions of the 120 persons were usedaonatically
extract and compare central profiles. As Fig. 5 shows, an Equal Error R&8586 was
achieved. We then rejected all persons who had at least one bad representation (eith
due to 3D acquisition or profile extraction problem) clearly impaitimg quality of the
central profile. The EER of the profile recognition for the remaining@&ons was 14%.
Finally, we manually tuned central profile extraction. We obtained 1 E&R.

Then, going on with the same 79 remaining persons and still applyargad refine-
ment, we used the lateral profiles involved in the symmetry optimisasoadditional 3D
information for recognition. A simple fusion (weighted sum) oé ttentral and lateral
profile distances improved the recognition performances from 11.8% @&0&lrespec-
tively, to 6.2% (see Fig. 6). This is similar to the 4.5% obtainedh®ysurface matching
approach, considering that 3 profiles (instead of 15) were used. Howbeemethod
based on 3 profiles is more sensitive to noise in the data, as showa laydle number of
rejected 3D representations. It is also worth noting that lateral and cendfdéproffer
the same level of recognition rate. The central profile, although moceimisnant, is
more sensitive to acquisition errors in the nose and mouth regions

Tests performed on a second session composed of three representationsqer per
gave similar results. However, the number of retained persons wasvii@s higher
than for session 1, mainly because fewer people worn their spectacles fonsas$he
comparison of session 2 relative to session 1 gave an EER &f;. This worse result is
due to an expression change of some people (rather stressed in sessiatet@rtracted
or even smiling in session2) and the rarity of people wearing glassession 2.
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ROC Curves for Profiles
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Figure 6: ROC curves for recognition based on central profile, average lptefid and
fusion of both profiles

4 Conclusions

A complete system for automatic person authentication from facial geomasripden
presented.

The 3D face acquisition equipment gives appropriate resolution withctist hard-
ware in cooperative scenarios. Its speed and the adequacy to work with rrearethf
projection are additional assets for practical implementations. Furtteetsdfill be de-
voted to clean typical problems encountered in the nose, eye and ear regieasl B
difficulties are expected to be tackled thanks to grey-level information.

Recognition performances of the surface matching from parallel profilesishbigh
discrimination power, especially if we consider possible improvenaitee acquisition
system and the inclusion of additional 3D representations as referencesntiiimgc
normalisation of the facial surface based on the vertical symmetry assumipt valid
way to speed up facial surface matching. It can also be used to find initial parameter
values for the global surface matching which is more robust but whiltlswsifers from
slowness in its current implementation.

The proposed solution for facial surface comparison meets the speed andymemo
requirements of classical security applications. Other potential develdpraech as
facial geometry and grey-level combination or 3D temporal analysis makeystem a
challenging face verifier.
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