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Abstract

This paper presents automatic face authentication based on facial surface
analysis. The success of a previous profile-based approach, exclusively rely-
ing on geometrical features of the external contour, led us to consider the full
facial surface. This motivation was further supported by the independence
of viewpoint and lighting conditions of 3D information. The geometry also
carries information which is complementary to grey-level based approaches,
supporting the combination with those techniques. The facial surface is cap-
tured by a system based on structured light and adapted to face to deliver
a cheap, fast and sufficiently precise solution. Typical applications concern
security in cooperative situations.

1 Introduction

More and more developments in the field of security concentrate on biometric solutions
in order to get rid of PIN codes and cards which can be stolen or lost. Among the possible
clues, speech and face modalities receive the largest acceptance from the users, but they
still lack reliability in real situations. In order to bring robustness with limited develop-
ment efforts, several modalities (speech, profile, face and 3D) can be combined [1, 2].

A previous profile analysis [3] has shown the adequacy of geometrical information
for automatic person authentication. It takes benefit from the rigidity of the parts involved
(forehead, nose, chin) and the little dependence on makeup or lighting conditions. This
explains the success of many profile works [4].

More information than the single profile is to be found in the whole facial surface. Par-
ticularly, the chin, nose, forehead and cheek regions will bring important clues, precisely
where grey-level features lack. Real 3D measures will help solving scale and rotation
dependence typically encountered in 2D analysis. Depth segmentation is a trivial way
to highlight the face out of background objects. Those advantages clearly state the 3D
geometrical approach as complementary to the grey-level analysis.

Although 3D facial modelling for compression and synthesis as in videoconferencing
[5] or medical applications is not a new field of interest, 3D facial identification activities
are still poorly addressed [6, 7] in the literature in comparison withfrontal or profile
developments.

The success of the 3D approach largely depends on the quality and cost of the 3D
data. We designed an active 3D acquisition prototype based on structured light which is
adapted to facial surface acquisition. Its resolution, high speed and sufficient facial cover



British Machine Vision Conference 2

for a low price make it appropriate for practical implementations. The selected solution
also allows discretion thanks to infrared lighting and texture capturein alignment with 3D
by switching the projector on and off.

The next section describes the structured light acquisition system. The hardware
choices are motivated and the calibration and 3D extraction procedures are briefly ex-
plained as they are out of the scope of this article. Section 3 reviews four different ap-
proaches we considered to compare 3D facial representations: a direct use of striped
images, a feature extraction approach and two facial surface matching algorithms, one
globally matching the facial surfaces and the second using the symmetry of the face. Sec-
tion 4 concludes the paper.

2 3D Acquisition

2.1 Motivations for structured light

Among the possible range acquisition systems [8], passive stereo techniques were rejected
due to their slowness and problems encountered in the non-textured zonesof the face. On
the other hand, structured light techniques, actively projecting a given pattern (in our case
parallel ’stripes’), capture depth information from the deformation of the light pattern.
Four reasons supported the structured light solution.

First, the additional cost is limited to a projector and a slide. Common cameras are
precise enough to get most of the geometrical information of faces.

Secondly, a standard camera benefits from the low price and high speed of video
hardware. With an appropriate slide, a single image with stripes sufficesto recover 3D
information. This enables 3D sequence analysis and time integration.

Thirdly, switching the projector on and off is a simple method to acquire the geometry
and texture in correspondence.

Fourthly, the projector illumination reduces the influence of ambient light and allows
dark situations. In particular, near infra-red light is more discreet and does not dazzle the
individual.

The bulkiness of the structured light system is not a drawback comparedto stereo
techniques which use a second camera. Other range techniques such as depth from motion
or from shading, although using one camera, are more complex and slow. The limited
field of depth of structured light systems due to the camera and projector lenses constrains
object or subject positioning, but automatically hides out-of-focus background.

2.2 Hardware choices

To keep investments low, we opted for off-the-shelf components.
A standard CCD black and white camera is plugged into a 768x576 pixels image digi-

tiser. A 24x36mm projector is used as light source. The slide is made ofglass, for good
mechanical stability. The pattern is composed of parallel stripes of different thickness
(either thick or thin) to code the identity of each stripe in the thickness distribution of
neighbouring stripes. The solution is quicker, simpler and cheaper thancolor or sequen-
cial pattern encoding.
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Figure 1: A typical image used for calibration

2.3 Set-up

The camera and the projector have been fixed on a rail. They can be both rotated around
one axis, but their optical axes are kept co-planar. This reduces the number ofcalibration
parameters.

Both optical systems have a limited span and depth of focus. We chose lenses to work
at 1m40 from the camera/projector head; the field of view covers about 30x40 cmand
the depth of focus is about 40 cm. This is sufficient for sitting attitudes in cooperative
situations.

2.4 Calibration

The first calibration step consists in roughly measuring the distance and relative angle of
the camera and projector. Rough values are also given to parameters depending onthe
pixel size of the camera/digitiser pair as well as slide and lenses characteristics.

Then a square object of known size (see Fig. 1) is presented 5 to 10 times indifferent
positions, anywhere in the field of view. The four corners are extractedand corresponding
3D vertices are derived. An automatic procedure refines calibration parameters tobring
the four vertices from each image in relative 3D positions coherent with known interdis-
tances and planarity.This calibration procedure has to be done once, as long asthe camera
and projector settings are not modified.

2.5 3D extraction

Automatic 3D extraction from striped image is done by stripe detection and labelling.
Each point of a stripe gives two coordinates which are converted, thanks tothe stripe
label, into X, Y and Z estimations by triangulation, using the calibration parameters.

Stripe detection is carried out by line following helped by the linear nature of the
slide. Grey-level profiles across the stripes allows to classify each stripe as thick or thin.
Thickness distribution of neighbouring stripes gives initial stripe labelling thanks to the
known thickness distribution of the slide. This initial labeling is checked against normal
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Figure 2: A striped image of a face and its 3D reconstruction from profile

ordering and spacing of stripes to solve local inconsistencies (commonlyfound in abrupt
transitions of the nose and chin) and propose labels in non-labelled areas(for instance
due to grey-level troubles in eyes or beard regions). The output isa set of ordered points
along the stripes from which a mesh is easily derived.

This implementation is very fast (less than 1 second on a Pentium 200) while offering
sufficient resolution for recognition purposes as we will see. For a mainly frontal posture,
a comfortable cover of the face is acquired, nearly from ear to ear and including the throat.
Background objects do not confuse face extraction, as projected stripes are normally out
of focus on such objects. Typical problems concern noses and eyes which often disturb
the visibility of stripes. Bushy or dark beards and glasses with thickframes impair stripe
detection in the concerned regions but grey-level support will be helpful in those areas.

2.6 Database

In order to test the acquisition system and to later estimate the performance of the 3D
analysis, a database of 120 persons was recorded. Each individual was asked to sit on a
chair and to look in the direction of the camera. Three shots were taken with little posture
changes (about10o up/down or left/right orientation changes).

Running the 3D reconstruction algorithm (see section 2.5) on the whole database
made us confident in the overall quality of stripe following, labelling and background in-
dependence. However, it highlighted the problems encountered in bushy beards, glasses,
nose and eyes, by order of importance. The quality of the 3D capture was later supported
by recognition experiments.
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3 3D Face Comparison

3.1 Analysis from Striped Images

We first analysed the 3D information directly from stripe deformationpresent in the 2D
images, without performing the explicit 3D conversion step which consumes time and
requests calibration. Similar approaches are part of the studies carried out by some re-
searchers [9, 10], but the specificity of the face makes it inappropriate fora complete
analysis, mainly due to the influence of the viewpoint on the shape ofthe stripes. Only
the prominence of the nose and the chin led to their own localisation.

3.2 3D Feature Extraction

Concluding from the previous section that the 3D extraction was necessary to benefit from
independence of volume information relative to rotation and scale, we looked for discrim-
inant (different among people) and reproducible (stable for a given person) features. The
description in terms of features synthesizes the 3D data into a more compactrepresenta-
tion, leading to an easier and quicker comparison. Also, feature by feature analysis eases
development and control during recognition.

The prominence of the nose was estimated relative to points of the cheeks located at
a given distance from the nose tip. Among 10 individuals, the valueswere stable for each
person (variations less than 1 mm) although spreading with a span larger than 5 mm.

The nose length was measured by localising the nose tip and the nose saddle (between
the eyes). Although this measure was less precise, it brought information thanks to the
large variability of the nose length among individuals.

However, the nose seems to be the only facial part providing robust geometrical fea-
tures for limited effort. Mouthes and eyes may involve disturbances. Foreheads and chins,
interesting rigid parts, don’t clearly exhibit reference points for normalisation.

We abandoned feature extraction and considered the global matching of the facial
surface. The first motivation was to completely normalise the two 3D representations to
be compared. A second objective was to study the surface similarity after normalisation
as a possible acceptance or rejection criterium.

3.3 Global Surface Matching

The global matching approach consists in finding some distance measure which quantifies
the difference between two 3D surfaces and in tuning the set of parameters (translations
and rotations) so that the distance measure is minimal.

The problem of the global approach is its large computational load. Sincethe face
surfaces are captured from different points of view, we must consider thefive degrees of
freedom (3 rotations and 2 translations). Also, a point to point correspondence must be
established between the 2 surfaces to be compared.

To solve the correspondence problem, parallel planes, with an interdistance of 1 cm,
are used to extract at most 15 (-7cm .. +7cm) profiles (see Fig. 3). To match two facial
surfaces, the corresponding profiles are compared two by two to issue a profile distance
based on the area separating the profile pairs. The global distance, which iscomputed as
the sum of the profile pair distances, is minimised by tuning the 5 parameters. To reduce
the number of comparisons, the minimisation is made iterative, tuning one parameter



British Machine Vision Conference 6

x

basche02

basche00

z

y’ = 5

y’ = 4

y’ = 3

y’ = 2

y’ = 1

y’ = 0

y’ = -1

y’ = -2

y = 6

y’ = -3

y’ = -4

y’ = -5

y’ = -6

y = -5

y = -4
y =-3

y = -2

y = -1

y = 0

y = 1

y = 2

y = 3

y = 4

y = 5

x

z

y = 5

y = 3

y = 4

y = 1

y = -1

y = -2

basche02

y = -3

y = -4

y = -5

y = 0

y = 2

y = -6

basche00

Figure 3: a) Profiles from two 3D representations with noses already in correspondence.
b) Profiles of the representations after surface matching

at a time, and organising cycles of minimisations with decreasing search space.On the
average, 10 cycles of successive parameter optimisations were necessary, what took about
5 seconds on a Pentium 200. See the results in Fig. 3b.

Although the approach was validated by a large number of successful experiments,
the optimisation sometimes falls in a local minimum, either due to bad initial parameter
values or noise in the 3D data (typically due to beard, glasses and nose disturbances).

To measure the recognition performance of the 3D approach, we applied an automatic
version of the surface matching algorithm, using the residual distanceafter matching as
a similarity measure between people. Comparing the first 30 people of thedatabase and
rejecting 3 individuals due to clear 3D acquisition problems (beard and glasses), 81 client
and 3159 impostor tests were carried out, leading to an EER (Equal Error Rate) of 14.5%
(Fig. 4). Then, we manually refined the surface matching for clients and bestimpostors
to reduce the influence of local minima in the optimisation process. Theobtained EER of
4.5% (see Fig. 4) is very encouraging, considering that the 3 shots weretaken from dif-
ferent angles and that only one shot was used as reference to take the acceptance/rejection
decision. Additional client and impostor tests out of the remaining 90persons and results
on a second session of three presentations confirmed this EER.

3.4 Facial symmetry

As presented in the previous section, surface matching suffers from a high computational
load. Several possibilities can improve the timing figures.
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Figure 4: ROC curves of 3D surface matching for part of the database, with (Manual) and
without (Automatic) manual tuning (see text)

First, refined initial estimates of the parameters help to reduce the search spaceof the
related parameters. These initial estimates must be robust enough to avoidlocal minima.

Secondly, the transitivity of relative translation and orientation values can be used.
For instance, knowing the relative positioning between references of the same person by
an off-line procedure, the relative positioning of a test representation with one reference
gives good initial estimates of relative positioning with other references.

Thirdly, the parameter set may sometimes be divided into subsets optimised sepa-
rately. The high-dimensional search space is then replaced by two low-dimensional search
spaces. In our case, the vertical symmetry of the face allows for a first normalisation, in-
trinsic to the face, and depending on three parameters (two rotations and one translation).
The remaining two parameters are tuned when the comparison with another representa-
tion takes place.

Until now, we have concentrated research on this third possibility. More precisely,
three parallel, mainly vertical planes are used to extract profiles from the facial 3D repre-
sentation to be compared. The central profile passes through a rough localisation of the
nose tip and the two lateral profiles are 3 cm away from it. The horizontal translation,
Left/ Right rotation and tilt rotation parameters are tuned to maximise the similarity of
the lateral profiles and the prominence of the central profile.

Although the face is not perfectly symmetrical, this algorithm leads quickly (about
0.5 second on a pentium 200) to a clear optimum. Moreover, this intrinsic optimisation
can be done off-line for the database representations and once for the representation to be
recognised. Effective 3D comparison then only concerns the remaining two parameters,
the vertical translation and Up/Down rotation.

For assessment of this normalisation procedure, automatically extracted central pro-
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Figure 5: ROC curves for recognition based on central profile automaticallyextracted,
rejecting bad quality 3D acquisitions and with manual refinement

files were compared two by two, measuring the variance of the local angle difference
between the profiles for several offsets. This stands for the remaining translation and
rotation parameter search.

In a first experiment, all acquisitions of the 120 persons were used to automatically
extract and compare central profiles. As Fig. 5 shows, an Equal Error Rate of18.5% was
achieved. We then rejected all persons who had at least one bad representation (either
due to 3D acquisition or profile extraction problem) clearly impairingthe quality of the
central profile. The EER of the profile recognition for the remaining 79persons was 14%.
Finally, we manually tuned central profile extraction. We obtained 11.8%EER.

Then, going on with the same 79 remaining persons and still applying manual refine-
ment, we used the lateral profiles involved in the symmetry optimisation as additional 3D
information for recognition. A simple fusion (weighted sum) of the central and lateral
profile distances improved the recognition performances from 11.8% and 10.0% respec-
tively, to 6.2% (see Fig. 6). This is similar to the 4.5% obtained bythe surface matching
approach, considering that 3 profiles (instead of 15) were used. However, the method
based on 3 profiles is more sensitive to noise in the data, as shown by the large number of
rejected 3D representations. It is also worth noting that lateral and central profiles offer
the same level of recognition rate. The central profile, although more discriminant, is
more sensitive to acquisition errors in the nose and mouth regions.

Tests performed on a second session composed of three representations per person
gave similar results. However, the number of retained persons was 106,much higher
than for session 1, mainly because fewer people worn their spectacles for session 2. The
comparison of session 2 relative to session 1 gave an EER of11:5%. This worse result is
due to an expression change of some people (rather stressed in session 1 and decontracted
or even smiling in session2) and the rarity of people wearing glasses insession 2.
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Figure 6: ROC curves for recognition based on central profile, average lateralprofile and
fusion of both profiles

4 Conclusions

A complete system for automatic person authentication from facial geometry has been
presented.

The 3D face acquisition equipment gives appropriate resolution with low cost hard-
ware in cooperative scenarios. Its speed and the adequacy to work with near infra-red
projection are additional assets for practical implementations. Further efforts will be de-
voted to clean typical problems encountered in the nose, eye and ear regions. Beard
difficulties are expected to be tackled thanks to grey-level information.

Recognition performances of the surface matching from parallel profiles show its high
discrimination power, especially if we consider possible improvementsof the acquisition
system and the inclusion of additional 3D representations as references. Theintrinsic
normalisation of the facial surface based on the vertical symmetry assumption is a valid
way to speed up facial surface matching. It can also be used to find initial parameter
values for the global surface matching which is more robust but which still suffers from
slowness in its current implementation.

The proposed solution for facial surface comparison meets the speed and memory
requirements of classical security applications. Other potential developments such as
facial geometry and grey-level combination or 3D temporal analysis makes thesystem a
challenging face verifier.
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