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Abstract— For some applications, data burden can become a

problem if the system needs to resolve targets ageately. Passive
coherent location using digital video broadcast sitpls is not an
exception: large amounts of data need to be acquile
transferred, and stored for processing. Redundancin signals can
be exploited thanks to compressive sensing by meaaot sparsity
in a given domain, random down-sampling the receiwk signal
and discarding unnecessary data. However, not allpplications
are suitable and may not be robust enough. This pap will
present preliminary results of passive coherent lation and
compressive sensing based on signal modelling andokte-Carlo
simulations.

I. INTRODUCTION
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Fig. 1. Two targets are simulated withS = 3% and reconstructed using
CS. Left, 15 symbols: target smearring in Dopplergfiency. Right, 100
symbols: the location of both targets is precise.

ARGET location using transmitters of opportunityshaDVB-T pilot carriers and their time evolution, assdribed by

been greatly studied in the recent years. Thessridters

can be of diverse nature, including civilian broasic
services offered in regulated frequency bands unither
conditions of having access to the originally, dingath
transmitted signal. The ubiquitous presence ofettrial
digital video broadcast (DVB-T) in urban and ruaaéas and
the known position of local broadcast towers makesé
signals an interesting option for Passive Cohetartation
(PCL). The algorithm typically used in PCL is based the
matched filter,
(ARD) [1, 2]. One of the most important downsidé$€EL is
cumbersome data volumes if target tracking is eméd.

Il. DATA VOLUME CHALLENGES AND COMPRESSIVESENSING

Improving the PCL system’s range resolution is fiesy
collecting data from several DVB-T channels in fiatd3].
The Doppler frequency resolution, indicating thegét's
velocity towards or from the receiver, will be inrett
accordance with the number of recorded symbols. d¥aw
recording several channels is not possible for errr
affordable software defined radios such as thesEBOO,
which is limited by the USB 2.0 standard [3], allog a
maximum effective transfer rate of around 40 MBJwdrds
the host. The data rate for one DVB-T channel im&ide is
about 32 MB/s [4], reducing to just one the numinér
channels per host computer.

Compressive sensing (CS) is based on recovery arssp
data by applying random sampling [5] which, in pijple, can
drastically reduce recorded data volumes. Sparsiy be

understood as the number of elements that are detxe

represent one signal. The fewer elements neededsparser
the signal is. Typically, modelling the expecte@rse echoes
and creating a dictionary of possible targets safisfactory
option. This is possible thanks to the perfect kieolge of the

the ETSI EN 300 744 standard [4]. The presenceoficuous
and scattered pilots in the received signals amdr ttyclic
behavior enables creating a representative-enoidjiorthry,
despite the unknown data being transmitted in #ta darriers.
This implies solving a minimization problem with aver-
complete measurement matrix or dictionary. Thecadt,
infinite solutions can be found but thanks to theurdgless
developed CS reconstruction algorithms (some exasnpte
the greedy algorithm Orthogonal Matching Pursuii(®) and

known as the Amplitude-Range-Doppleonvex relaxation using the I1-norm minimizatiomaithm

[6]), a valid reconstruction can be obtained predidhat a
balance is found between using a not too low doamming
rate and having a not too complex scene (low syarsue to
the enormous size of the generated dictionaries/;tmorm
algorithm cannot be applied within normal time fesn
Therefore, the computationally simpler OMP algarithis
preferred in this text over convex relaxation.

[ll. SIMULATED AND REAL EXPERIMENTS

Initial results are obtained by generating a diciy
describing a scene ranging from 0 to 50 range ¢edish cell
is 33 m) and a Doppler frequency ranging fresd5 Hz to
+25 Hz. For testing purposes, a synthetic signal is geadr
including two targets at different ranges and vitles
described by (-15 cells,7Hz) and (-35 cells412 Hz). In
Figure 1, two CS reconstructions using a down-samgpgDS)

rate of 3% on the original data are shown to illustrate the

influence of the number of symbols considered ire th
processing. As expected, the ranges are corretelytified in
both cases given the sufficient bandwidth of thegls
recorded channel. However, using only 15 symbolses a
large uncertainty when extracting the Doppler festy
although an approximation can be inferred. The nsgrabols
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Fig. 2. Results for one target at 2.5 km anB0 Hz. Left, image produced by
the ARD algorithm and the full measurement. Rightieconstructed image
using the OMP algorithm aralS = 3%.

are selected, the smaller the uncertainty becore@shing a
saturation point at around 100 symbols.

Real measurements of a commercial airplane climbfigr
takeoff were obtained with an 11-dBi Yagi-like amtea used
for domestic reception of DVB-T broadcasts (chargtel 482
MHz). The target was in a direct line-of-sight witte receiver
during the whole 10-second recording. As a firstrapt and
for demonstration purposes, only 100 symbol8%6 ms are
considered to ensure that the target stays in mmgesrange
and Doppler bin. The same synthetic dictionary ceed for
simulations can be used for reconstructing realnese
discarding the extremely cost-ineffective and ugiljkoption
of populating it with all possible real acquisit®rn Figure 2-

left a reconstruction of the scene is shown usihg t

conventional ARD algorithm, where one target lodatst

2.5 km and at around-50 Hz is clearly seen, as well as clutte

around 0 Hz and closer ranges, namely buildingsbyethe

receiver. The graph on the right side shows the

reconstruction results for a sector of the scere Brightest
point corresponds to the actual position of thgagrwhereas
the remaining points are reconstruction noise duoe
uncertainty created by the slight but expected ratsm
between the received signal and the models.

The robustness of CS applied to PCL is investig#tadks
using Monte-Carlo simulations, in which probabdi of
detecting the airplane are drawn under differegmaito-noise
ratio (SNR) conditions. White noise was added ® dlready
existing measurement noise in the surveillanceasjghe total
estimated SNR varying from-30dB to +30dB (no
supplementary noise). A probability of false ala(R,) of
10™* is set, with a total of 1,000 trials per SNR valuere
performed using cell averaging constant false alaate
detection. For each trial, a different pseudo-samgptequence
was considered for minimizing the effects of randess in
scene reconstruction. In Figure 3, two graphs sRpwalues
for all SNR values and random DS ratesoaf%, 0.5%, 1%,

2%, and5%. The graph in Figure 3-top describes the results fiz

50 symbols, yielding,; values close to 1 for DS ratesief or
above and withSNR = +5 dB. Keeping only0.1% of the
original data is noticeably insufficient with, < 0.4, whereas
keeping0.5% producesp, rates close t0.9, opening the way
for high reconstruction rates using very low datbumes. This
robustness against noise is even clearer in Fignnattom,
with perfect reconstruction

50
et

DVB-T symbols

i

=1le-4)
o o
o [oe]

Pd (Pfa
o
5

0.2

SNR (dB)

100 DVB-T symbols
o

—+— DS =5%
—&—DS=2%
—+#*—DS=1%

—<— DS =0.5%
—*—DS=0.1%

20 30

SNR (dB)

Fig. 3. Probability of detection vs. SNR under different B$es for: top, 50
DVB-T symbols; bottom, 100 DVB-T symbols.

DS =0.1% and SNR = 0dB. For the highest DS rate tested,
DS = 5%, perfect results are obtained as fromRr = —20 dB.

IV. RESULTS ANDFUTURE WORK

The preliminary work presented in this documentvsho
promising results based on both simulations andahd®CL
measurements using DVB-T signals as illuminators of

Ppportunity available at all times. Under typicadise and

clutter conditions, the target can be perfecthated just using

(9§% of the typical data stream. Randomly down-sampling

right from the software radio’s buffer allows a eaerable
data volume reduction, enabling the acquisitionmafltiple
VB-T channels by one single host, therefore imprgvthe
system’s range resolution. Longer measurements aise
possible, thus increasing the Doppler frequencylutisn.
Under the assumption that the target follows a ghmoo
trajectory, the reconstructed range and velocity dogiven
time lapse may be used as a priori knowledge fogeta
tracking. This knowledge is considered as sidermédion,
limiting the size of the sectors to be reconstrdieed reducing
even further the data volume required for high ctéte rates.
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