
 

Abstract— For some applications, data burden can become a 
problem if the system needs to resolve targets accurately. Passive 
coherent location using digital video broadcast signals is not an 
exception: large amounts of data need to be acquired, 
transferred, and stored for processing. Redundancy in signals can 
be exploited thanks to compressive sensing by means of sparsity 
in a given domain, random down-sampling the received signal 
and discarding unnecessary data. However, not all applications 
are suitable and may not be robust enough. This paper will 
present preliminary results of passive coherent location and 
compressive sensing based on signal modelling and Monte-Carlo 
simulations. 

I. INTRODUCTION 

ARGET location using transmitters of opportunity has 
been greatly studied in the recent years. These transmitters 
can be of diverse nature, including civilian broadcast 

services offered in regulated frequency bands under the 
conditions of having access to the originally, direct-path 
transmitted signal. The ubiquitous presence of terrestrial 
digital video broadcast (DVB-T) in urban and rural areas and 
the known position of local broadcast towers make these 
signals an interesting option for Passive Coherent Location 
(PCL). The algorithm typically used in PCL is based on the 
matched filter, known as the Amplitude-Range-Doppler 
(ARD) [1, 2]. One of the most important downsides of PCL is 
cumbersome data volumes if target tracking is envisaged. 

II. DATA VOLUME CHALLENGES AND COMPRESSIVE SENSING 

Improving the PCL system’s range resolution is possible by 
collecting data from several DVB-T channels in parallel [3]. 
The Doppler frequency resolution, indicating the target’s 
velocity towards or from the receiver, will be in direct 
accordance with the number of recorded symbols. However, 
recording several channels is not possible for current 
affordable software defined radios such as the Ettus B100, 
which is limited by the USB 2.0 standard [3], allowing a 
maximum effective transfer rate of around 40 MB/s towards 
the host. The data rate for one DVB-T channel in 8k mode is 
about 32 MB/s [4], reducing to just one the number of 
channels per host computer. 

Compressive sensing (CS) is based on recovery of sparse 
data by applying random sampling [5] which, in principle, can 
drastically reduce recorded data volumes. Sparsity can be 
understood as the number of elements that are needed to 
represent one signal. The fewer elements needed, the sparser 
the signal is. Typically, modelling the expected scene echoes 
and creating a dictionary of possible targets is a satisfactory 
option. This is possible thanks to the perfect knowledge of the 

  
Fig. 1. Two targets are simulated with ��	 = 	3% and reconstructed using 
CS. Left, 15 symbols: target smearring in Doppler frequency. Right, 100 
symbols: the location of both targets is precise. 

DVB-T pilot carriers and their time evolution, as described by 
the ETSI EN 300 744 standard [4]. The presence of continuous 
and scattered pilots in the received signals and their cyclic 
behavior enables creating a representative-enough dictionary, 
despite the unknown data being transmitted in the data carriers. 
This implies solving a minimization problem with an over-
complete measurement matrix or dictionary. Theoretically, 
infinite solutions can be found but thanks to the countless 
developed CS reconstruction algorithms (some examples are 
the greedy algorithm Orthogonal Matching Pursuit (OMP) and 
convex relaxation using the l1-norm minimization algorithm 
[6]), a valid reconstruction can be obtained provided that a 
balance is found between using a not too low down sampling 
rate and having a not too complex scene (low sparsity). Due to 
the enormous size of the generated dictionaries, the ��-norm 
algorithm cannot be applied within normal time frames. 
Therefore, the computationally simpler OMP algorithm is 
preferred in this text over convex relaxation. 

III.  SIMULATED AND REAL EXPERIMENTS 

Initial results are obtained by generating a dictionary 
describing a scene ranging from 0 to 50 range cells (each cell 
is 33 m) and a Doppler frequency ranging from −25	�
 to 
+25	�
. For testing purposes, a synthetic signal is generated 
including two targets at different ranges and velocities 
described by (-15 cells, -7	�
) and (-35 cells, +12	�
). In 
Figure 1, two CS reconstructions using a down-sampling (DS) 
rate of 3% on the original data are shown to illustrate the 
influence of the number of symbols considered in the 
processing. As expected, the ranges are correctly identified in 
both cases given the sufficient bandwidth of the single 
recorded channel. However, using only 15 symbols causes a 
large uncertainty when extracting the Doppler frequency 
although an approximation can be inferred. The more symbols 
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Fig. 2. Results for one target at 2.5 km and −50	�
. Left, image produced by 
the ARD algorithm and the full measurement. Right, a reconstructed image 
using the OMP algorithm and �� = 3%.  

are selected, the smaller the uncertainty becomes, reaching a 
saturation point at around 100 symbols. 

Real measurements of a commercial airplane climbing after 
takeoff were obtained with an 11-dBi Yagi-like antenna used 
for domestic reception of DVB-T broadcasts (channel 22, 482 
MHz). The target was in a direct line-of-sight with the receiver 
during the whole 10-second recording. As a first attempt and 
for demonstration purposes, only 100 symbols or 89.6	�� are 
considered to ensure that the target stays in one single range 
and Doppler bin. The same synthetic dictionary generated for 
simulations can be used for reconstructing real scenes, 
discarding the extremely cost-ineffective and unlikely option 
of populating it with all possible real acquisitions. In Figure 2-
left a reconstruction of the scene is shown using the 
conventional ARD algorithm, where one target located at 
2.5	�� and at around −50	�
 is clearly seen, as well as clutter 
around 0 Hz and closer ranges, namely buildings nearby the 
receiver. The graph on the right side shows the CS 
reconstruction results for a sector of the scene. The brightest 
point corresponds to the actual position of the target, whereas 
the remaining points are reconstruction noise due to 
uncertainty created by the slight but expected mismatch 
between the received signal and the models. 

The robustness of CS applied to PCL is investigated thanks 
using Monte-Carlo simulations, in which probabilities of 
detecting the airplane are drawn under different signal-to-noise 
ratio (SNR) conditions. White noise was added to the already 
existing measurement noise in the surveillance signal, the total 
estimated SNR varying from -30	�� to +30	�� (no 
supplementary noise). A probability of false alarm (���) of 
10�  is set, with a total of 1,000 trials per SNR value were 
performed using cell averaging constant false alarm rate 
detection. For each trial, a different pseudo-sampling sequence 
was considered for minimizing the effects of randomness in 
scene reconstruction. In Figure 3, two graphs show �! values 
for all SNR values and random DS rates of 0.1%, 0.5%, 1%, 
2%, and 5%. The graph in Figure 3-top describes the results for 
50 symbols, yielding �! values close to 1 for DS rates of 1% or 
above and with �"# ≥ +5	��. Keeping only 0.1% of the 
original data is noticeably insufficient with �! < 0.4, whereas 
keeping 0.5% produces �! rates close to 0.9, opening the way 
for high reconstruction rates using very low data volumes. This 
robustness against noise is even clearer in Figure 3-bottom, 
with perfect reconstruction rates for 100 symbols and 

 
Fig. 3. Probability of detection vs. SNR under different DS rates for: top, 50 
DVB-T symbols; bottom, 100 DVB-T symbols. 

�� = 0.1% and �"# = 0��. For the highest DS rate tested, 
�� = 5%, perfect results are obtained as from 	�"# = −20	��. 

IV.  RESULTS AND FUTURE WORK 

The preliminary work presented in this document show 
promising results based on both simulations and actual PCL 
measurements using DVB-T signals as illuminators of 
opportunity available at all times. Under typical noise and 
clutter conditions, the target can be perfectly located just using 
0.1% of the typical data stream. Randomly down-sampling 
right from the software radio’s buffer allows a considerable 
data volume reduction, enabling the acquisition of multiple 
DVB-T channels by one single host, therefore improving the 
system’s range resolution. Longer measurements are also 
possible, thus increasing the Doppler frequency resolution. 
Under the assumption that the target follows a smooth 
trajectory, the reconstructed range and velocity for a given 
time lapse may be used as a priori knowledge for target 
tracking. This knowledge is considered as side information, 
limiting the size of the sectors to be reconstructed and reducing 
even further the data volume required for high detection rates. 
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