# Beamforming and reflector antenna approach for silicon-based Ka-band massive MIMO base stations

T.A.H. Bressner, U. Johannsen A. B. Smolders

Eindhoven University of Technology, Fac. of Electrical Engineering, Den Dolech 2, 5600 MB Eindhoven, The Netherlands, Email: T.A.H.Bressner@tue.nl

### Abstract

Presenting a combination of hierarchical beamforming and reflector antennas to cope with the degradations faced at higher frequencies. The overall objective is to develop a focal line/focal plane array (FLA/FPA) base station system to enable mm-Wave for 5G communications in urban outdoor environments.

## Introduction

Driven by the steadily growing demand for higher data rates and the rising number of mobile communications devices, the goal is to utilize mm-Waves. The benefits from this is a wider bandwidth and that large scale arrays become feasible. This work contributes to the development of a focal line/focal plane array (FLA/FPA) within the EU project SILIKA [1]. Therefore, this paper presents a promising reflector concept as well as a system-level beamforming approach. Furthermore, it is shown how both can be tested in a simulator based on real-world scenarios.

#### Reflector concept

As in [2] discussed, there are new challenges like higher and quicker changes of path loss in the mm-Wave band. At the same time the antenna structure becomes smaller. Hence, massive MIMO becomes feasible and so low-cost silicon amplifiers can be used. Furthermore, by introducing reflectors a similar gain with fewer antenna elements can be achieved. Since this lowers the complexity, more sustainable massive MIMO systems can be realized.



Figure 1: Top and side view of an upright cylinder reflector

To provide service in urban scenarios, as defined for LTE in [3], it is needed to realize a sufficiently high effective isotropic radiated power (EIRP) to overcome the degradations faced at higher frequencies [2]. A promising design is the upright cylinder reflector shown in Figure 2. This merges the advantages of having a wide steering angle in elevation and a reflector gain in azimuth. Furthermore, as it is pointed out in [4], the use of sub-arrays lower the complexity. An additional improve can be achieved by dividing it into two tilted reflectors, by which a lower scanning angle in elevation is needed.

#### Beamforming approach

By combining analog and digital beamforming it is possible to design a cost and power efficient base station that is able to perform adaptive beam steering. For a further decrease in complexity the system can be divided into sub-arrays. Therefore, the goal is to optimize the hierarchical beamforming approach as shown in Figure 2.



Figure 2: Hierarchical beamforming network

To ensure that an optimal solution can be found, a system simulator is needed. As displayed in Figure 3, a prior defined scenario is generated and the developed signal processing and antenna blocks are tested.



#### Conclusions

Based on urban scenario conditions a most promising reflector concept is identified as well as the beam former approach. To optimize both entities, the development of the presented system simulator is in progress.

#### References

- 1. www.silika-project.eu
- S. Rangan et al., "Mm-wave cellular wireless networks: potentials and challenges", in *Proceedings of the IEEE*, vol. 102, 2014, pp.366-385.
- 3GPP, "Study on scenarios and requirements for next generation access technologies(Rel.14)", 2016, pp.16-40.
- S. Han et al., "Large-scale antenna systems with hybrid analog and digital beamforming for mm-wave 5G", IEEE Communications Mag., vol.53, 2015, pp.186–194.