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Abstract

This paper presents SMART, a European project
that intends to help Mine Action Centres (MAC) in
their task of area reduction by providing a GIS-based
environment with specific tools to ease the interpreta-
tion work of the operator. Using multi-spectral optical
data and SAR data obtained during a flight campaign
in Croatia and satellite data from before the conflict,
the tools will help the land-cover classification and the
detection of indicators of mine-suspected areas. The
results of these tools will be given to a data fusion
module that will summarise all data and contextual in-
formation available to facilitate the creation of a ’map
of danger’.

SMART started in 2001 for a duration of 3 years.

1 Introduction

The use of airborne and/or space-borne tools with
optical and microwave sensors seems to be a promising
approach to improve the general mine action assess-
ment and area reduction. The usefulness of such tools
has already been studied; the possibility to analysis
automatically a large amount of data and ease a vi-
sual analysis is among their advantages [5] [6].

It is therefore the goal of the project to develop

adapted data understanding and data processing tools
for improving efficiency and reliability of general mine
action assessment. The goal of SMART is not to de-
tect landmines or minefields but help reducing mine-
suspected areas. SMART is due to end in 2004.

2 Functional description

SMART functional description is given in figure 1.
The use of the SMART environment is planned as

follows. The end-user, a MAC, defines the tasks, the
target regions and the required and expected results
and provides mine action databases, maps and auxil-
iary contextual data (described in section 3). A data
provider collects the sensor data (described in sec-
tion 4) and makes them available.

Before launching the SMART environment, the op-
erator can run commercial software on the data. Such
software can be used to perform a classification or a
change detection between data from before and after
the time period when the minefields were laid. The
results of this can be read within the SMART envi-
ronment.

Within the environment the operator can run the
SMART detectors of indicators of mine-suspected ar-
eas and edit their results. The list of indicators, with
an associated list of detectors, is given in section 5.
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Figure 1: SMART functional description

The operator can use any external information avail-
able, such as prints of aerial views, on some specific
areas with around 10 to 15 cm resolution, collected
during the same flight campaign as for the optical and
SAR data.

The operator can use GIS tools to perform some
specific analysis: visual identification of some features,
identification of some indicators.

The operator can run the module Synthesis by fu-
sion, briefly described in section 6, to get maps of
confidence for each class and merge these maps into
one overview image.

From this the operator can produce discrete and
continuous ’danger maps’that are described in sec-
tion 7. These maps can help the analysis. For instance
after studying the maps, the operator can decide to
focus on some area. The operator can threshold the
continuous ’map of danger’ to get a binary map.

The operator provides a report (that may contain
the discrete ’danger map’, the continuous ’danger map’
and the binary map) to the user who will make the
area reduction decision.

The following sections describe in more details the
different parts of this environment.

3 Expert and contextual knowledge

The expert knowledge is the information obtained
from the end-user, i.e. CROMAC (Croatian Mine Ac-
tion Centre), that will help the development of the
SMART tools. It includes:

- Knowledge of the overall mine situation in Croa-
tia, allowing the selection of relevant test and vali-
dation areas. Three test areas were selected in mine-
suspected zones so as to represent the landscape diver-
sity of the country. A supplementary area, with char-
acteristics similar to one of the test areas, was chosen
to implement the global validation of the project.

- Knowledge about the way area reduction is cur-
rently performed in the country to ensure that the
SMART environment and tools correctly fit with cur-
rent procedures.

- An analytic assessment of the mine contamina-
tion in the test areas, and knowledge about the mine
laying strategy. Based on the analysis of military doc-
uments, it resulted in the production of reports and
maps showing the probable location of minefields, lines
of mines, and groups of mines.

- A general description and an expert assessment
of the vegetation in the form of a visual interpreta-
tion of the images supported by field approval. The
in-depth analysis of the vegetation features permits
to understand the changes that occur when the land
is abandoned, and to focus on the relevant ones, in
agricultural zones or in semi-natural vegetation.

- Agricultural data to help interpret the remotely
sensed images.

- Information on soil properties in the test areas.
Differences in soil colour, moisture and texture can
help to explain differences in spectral signatures.

- Information on mine situation and activities re-
lated to demining. CROMAC is keeping and updat-
ing a Mine Action and Geographic Information Sys-
tem (MAGIS) that contains useful elements for the
SMART environment, in particular: mine-suspected
areas, mine records for which the co-ordinates are avail-
able, cleared areas, cleared areas checked by quality
insurance, mine accidents and incidents.

Contextual information has been gathered during
two field missions in Croatia. It includes:

- The general description of the geographic features,
land cover and land use of the test areas. These ele-
ments provide a better understanding of the landscape
and ease the interpretation of the images.

- The description and location of potential indica-
tors, which were visually inspected, photographed and
represented in the form of a GIS vector layer.

- The building of a training and validation set for



supervised classification. For each sample area, a num-
ber of observations pertaining to features of the veg-
etation were noted down, e.g. the vegetation type,
cover rate, and height.

4 The data

Three different airborne sensors were used to col-
lect remote sensing data of all four test areas: DLR’s
experimental synthetic aperture radar (E-SAR) col-
lected SAR data in X-, C-, L-, and P-band (fully
polarimetric and interferometric in L- and P-band).
Optical scanner data were recorded by the Daedalus
multi-spectral scanner in 11 different channels, rang-
ing from visible blue to thermal infrared. Additionally,
very high resolution colour infrared aerial views were
collected by a RMK camera (Zeiss ReihenMessKam-
mer), covering the spectral range between near in-
frared and green. The Daedalus and the RMK data
were collected from 300m above ground. The E-SAR’s
recording altitude was 3000m above ground.

Due to the very low sensor altitude, the original
RMK aerial views have a spatial resolution of just 3-
5 centimetres. A3 paper prints which have a spatial
resolution of 10-15cm are mainly used to help the user
by the interpretation of the E-SAR and Daedalus data
and processing results. Georeferenced Daedalus data
with 1m resolution are available, the final data set was
mosaicked from several georeferenced data stripes. E-
SAR data are available in georeferenced form (mul-
tilook amplitude data) and as SLC (single look com-
plex) data in slant range geometry. The spatial resolu-
tion depends on the radar band: georeferenced X-band
(9.6GHz) and C-band (5.3GHz) data have 1.5m res-
olution, L-band (1.3GHz) data has 2.0m and P-band
(450MHz) data has 4.0m resolution. For SLC data the
spatial resolution is the same in slant range direction,
but it is higher by a factor of 2.5 in azimuth direction
(flight direction). A polarimetric and interferometric
analysis of E-SAR data is only possible with SLC data,
the results can be georeferenced afterwards.

A combination of optical and SAR sensors was con-
sidered because these sensors deliver complementary
information about the ground. While optical data
show information about the reflectance of the upper-
most part of the vegetation (or other objects), SAR
data is able to penetrate through vegetation to a cer-
tain amount, depending on the wavelength. While
X-band only penetrates through some centimetres of
vegetation, P-band is able to penetrate through a for-
est.

KVR images (visible band, panchromatic, spatial

resolution of 2m) of before the war were obtained for
the test-sites. They are used for change detection.

5 Potential indicators of minefields

With the expertise of CROMAC and two field mis-
sions in the test areas, a list of potential indicators of
mine-suspected zones has been established.

This list is evolving regularly and currently includes
(but is not limited to):

- Trenches and man-made embankments (remains
of military positions that had to be protected)

- River banks (natural obstacles to be reinforced by
mines)

- Bridges, including destroyed ones (important strate-
gic points)

- Tracks that are no longer in use (potentially be-
cause of fear of mines)

- Agricultural areas that are no longer in use (ditto)
- Shores of ponds (mined to limit access)
- Edges of forests (forests used as shelters by mili-

tary)
- Power lines (strategic features)
- Soft edges of hardtop roads (used for the progress

of military vehicles)
Specific detectors are being built to extract these

features. Some of them are described in the next sub-
sections.

In addition to the indicators in the above list, in-
dicators requiring external knowledge were also iden-
tified, for instance:

- Mine accidents/incidents (from Mine Action Ge-
ographic Information System)

- Mine records (ditto)

5.1 Supervised per-region classification

A supervised per-region classification was performed
on 10 of the 11 available optical channels (only the
425-450nm channel was discarded), and neo-channels
created on the basis of the raw data, namely principal
components, NDVI, and texture images. It allowed
the detection of a number of indicators:

5.1.1 River banks, shores of ponds

The class water is highly separable from the other
classes and has a kappa of 0.97. Since the river can
rather easily be classified, it is possible to extract its
banks in a further step. Ponds are differentiated from
rivers thanks to a shape criterion.



5.1.2 Agricultural areas no longer in use

The difference in vegetation type and texture be-
tween cultivated and uncultivated plots can be high-
lighted thanks to classification, and preliminary re-
sults are promising (fig 2). In order to differentiate for-
mer agricultural land that is currently neglected from
land that was not cultivated even before the conflict,
change detection will be performed using Daedalus
and KVR data.

5.1.3 Edges of forests

Per-region classification gives fairly good results for
the class forests, with a kappa of 0.81. However, con-
fusion exists between forests and adjacent former agri-
cultural land covered with bushy vegetation after sev-
eral years of neglect. This confusion can be overcome
by performing the same type of classification on KVR
images recorded just before or at the beginning of the
conflict, when the forests have cleaner contours.

Alternatively, we have introduced a new clustering
algorithm derived from the techniques of probabilis-
tic modeling which maximizes an award function on
the data partition. We have also shown that the pro-
posed framework can integrate easily the spatial infor-
mation. However, it should be remarked that the good
performance of forest boundary and bush bands comes
from the high quality of their spectral signatures on
Daedalus data.

5.1.4 Soft edges of hardtop roads

Hardtop roads can be highlighted thanks to classifi-
cation, but there is a risk of confusion with other gray
surfaces like graveled yards or slate roofs. Here again,
the confusion can be overcome by using non-spectral
information, i.e. a shape criterion. The kappa for this
class is 0.87. A buffer can be used to extract the soft
edged of the hardtop roads.

5.2 Detector of aligned poles

Since the area beneath power line is often mined for
strategic reasons, a specific tool has been designed to
detect power line poles. The possibility to extract the
power line positions from maps is seen as not being
optimal due to two reasons. In Croatia many of the
topographic maps were created in the 70s and don’t
show the actual situation. Also, when dealing with
large areas, the manual extraction of power lines from
maps becomes very time consuming, while an auto-
matic processing tool does not need much interaction.

In the multi-spectral Daedalus scanner data, power
lines and power line poles cannot be detected reli-
ably due to the small diameter of cables and poles.
In E-SAR data the cables show a strongly direction

dependent behaviour. They are clearly visible if the
power line runs in flight direction but cannot be seen
for other directions. Due to their rotation symmetry,
the power line poles are well suited for an automatic
extraction from the data.

Vertical poles show strong backscatter in co-polar
channels due to double reflection on the ground and
the pole, especially at longer wavelengths like at P-
band. To discriminate poles from tree trunks, a second
parameter is used. L-band cross-polar data strongly
interact with volume scatterers like the crowns of trees
and show a strong backscatter there. Poles are no
volume scatterers and so their cross-polar return in
L-band is very low.

A mask of all objects is created which show high
backscatter in co-polar P-band and low backscatter in
cross-polar L-band. Then an algorithm based on the
Hough transform is applied to detect aligned patterns
within these candidates, using the knowledge of the
average distance between two poles (fig 3).

5.3 E-SAR polarimetric decomposition and
classification

The entropy/alpha decomposition method [4] was
used to extract polarimetric information of L- and
P-band SLC SAR data. Three different scattering
mechanisms can be extracted which are described by
the three eigenvalues and eigenvectors of the 3x3 co-
herency matrix. The eigenvalues show the intensity
and the eigenvectors show the physical nature of the
backscatter.

Several parameters can be extracted from the eigen-
vectors and eigenvalues, the most important are the
entropy H which reflects the dominance of one scat-
tering mechanism over the others and therefore the
degree of randomness, and the a-angle which is a mea-
sure for the scattering mechanism itself. The range
of the entropy lies between 0 (low entropy, only one
scattering mechanism) and 1 (high entropy, three scat-
tering mechanisms of similar strength). The a-angle
can have values between 0 and 90. a=0 means that
there exists an odd number of reflections (e.g. sin-
gle bounce scattering from the ground). An increase
of the a-angle is a sign for a change of the scattering
properties to dipole scattering (a=45) and finally to
an even number of reflections (double bounce, a=90).

The information content of the results of a H/A/a
decomposition is very different from regular intensity
data of SAR or optical sensors. It needs more inter-
pretation than intensity data but on the other hand
contains very useful information, which is independent
of the intensities. Such independent information can



help in separating classes which appear very similar in
optical and SAR amplitude data.

5.4 Detector of abandoned roads

The idea is to detect roads on the KVR image and
the Daedalus image and to compare them. For the
single-channel KVR image a classic line detector [8]
was used. For the Daedalus image we used a line de-
tector based on multi-variate statistics [3] and applied
it on the channels where roads appear as bright lines.
Figure 4 shows the results superposed on one Daedalus
channel. A few false alarms still persist and these
should be eliminated. The method allows to find an
abandoned road as well as en newly constructed road.

5.5 Detector of ploughed fields

In ploughed fields, on the Daedalus image a parallel
linear structure is found while, in unused fields, struc-
ture is more random due to random distribution of
vegetation. The idea is to detect regular-shaped sur-
faces that might correspond to fields and to class them
according to whether they contain parallel structures.
A multi-variate edge detector [2], initially developed
for polarimetric SAR images, was used. It is based
on a Hotellings T

2 test for difference of means. For
selecting possible fields, the edge detector’s response
with a high threshold is used and a watershed algo-
rithm is applied to find closed regions. Only regions
that are sufficiently compact are kept. Within each
selected region the threshold for the edge detector is
searched that mimimizes the variance of edge direc-
tions within the region. This threshold is used to cre-
ate a binary edge image on which a Hough transform
is applied. The ratio RH between the maximum of the
Hough transform and the second maximum (found for
a different direction than the first one) is used as a
measurement of presence of a parallel structure. Two
thresholds T1 < T2 were defined and used as follows for
classifying the selected regions: if RH ≥ T2 the regions
contains parallel structure and is probably a used field.
For RH ≤ T1 the region has many edge directions and
can be abandoned. If T1 < RH < T2 there is doubt
and supplementary evidence is needed to reach a de-
cision. Results are shown in fig. 5. Some fields were
not selected. Most used fields that were selected are
either classified as containing parallel structure or as
’doubt’. The unused fields are either classified as ’no-
parallel-structure’ or as ’doubt’.

5.6 Road tracking experiment

Curvilinear structure is an anomaly feature, e.g.,
shores of rivers, tracks that are no longer in use, irri-
gation channels, etc.

One of our contributions is that we have designed a
filter detecting road direction while reducing the noise
which seems to be insensitive to the clutters caused
by local factors, e.g., grass which covers the tracks.

To detect the road direction on an image, the Hes-
sian matrix is calculated after smoothing convolution.

With the assumption that the change perpendicu-
lar to the boundary is much bigger than those along
other directions, we can use the unit eigenvector cor-
responding to the eigenspace of bigger eigenvalue for
Hessian matrix to approximate the normal direction
of the road. There are several reasons for us to do so.
The most important one is that such feature represen-
tation is invariant to linear transformation of measure-
ments. Therefore, it is possible to detect uniformly
the curvilinear structures with different magnitudes
of gradient filtering. It also avoids to introduce some
iterative procedure (e.g., rotative projection computa-
tion) whose performance and computation complexity
depend on the sampling step size.

Then the principal component analysis is applied
to optimize the road direction within a local window.
This is very important for the initialization of tracking
seed.

To complete the tracking, we have adopted the same
Kalman filter as in [13] except that the observation
vectors consist of the two side boundaries of the road
and their norm directions instead of the profile feature.

Experiments have been carried out to verify the cor-
rectness of our idea. Fig. 6 shows two examples: one
is on a main road and the other on a small path. Both
of them are successful. The detection result on the
small path is more interesting since it belongs to one
of the potential anomaly indicators and our method
is insensitive to the clutter generated by wild grasses.
However, we have also noted during the experiments
that on another branch of the main road in the same
scene where shadow effect is dominant, the tracking
path deviates from the true one. For the moment, we
think it may be caused by the unimodal assumption of
the Kalman filter. Then some other methods such as
’particle filtering’ techniques [7] have to be explored.

6 Synthesis by fusion

The aim of this module will be to combine the re-
sults of classifications and detectors in order to provide



a global classification with confidence degrees for each
class at each point or region to be given as input for the
construction of danger maps. The main approach that
is being investigated is belief function theory [11, 12],
since it allows us to model in a natural way the am-
biguities and imperfections inherent to each classifier
or detector. We are developing two approaches, an
unsupervised one and a supervised one.

In the unsupervised approach, each result of the
previous step is interpreted as a set of hypotheses,
which can be disjunctions of classes of interest. This
occurs in particular if a classifier is not able to distin-
guish between two classes. Then the frame of discern-
ment (i.e. the set of structures of interest) is derived
automatically as the set of intersections between the
hypotheses output by several classifiers and detectors,
similarly as in [9]. These intersections constitute ac-
tually the singletons, and each original hypothesis can
then be reinterpreted as a disjunction of these single-
tons. To avoid too many classes, very small classes
are eliminated, since they are usually not significant.
Mass functions are then defined on each hypothesis ac-
cording to the numerical answer provided by the clas-
sifiers and detectors. The combination is performed
using Dempster’s rule in unnormalized form and deci-
sion is taken according to the maximum belief rule.

In the supervised approach, we rely on some ground
truth information, derived from on-site observations
and from RMK images, to define the structures of in-
terest and the frame of discernment. Then in each
classification, we compute the confusion matrix ac-
cording to the ground truth information. Classes that
are often confused are then grouped together and con-
sidered as one compound hypothesis. This explicit
modeling of the ambiguities results in less conflict dur-
ing the combination [1, 10]. Additionally, we derive
discounting factors from the individual classification
results that represent the reliability of each classifier
for each class. Masses are estimated as in the unsuper-
vised approach, and are then discounted using these
factors [12] before combination.

In both approaches a final regularization step is to
be introduced in order to achieve a better spatial con-
sistency. This is performed at the decision level, by
checking that a decision at one pixel is consistent with
the one at neighbour pixels.

7 ’Danger maps’

’Danger maps’ are a way to put together all the in-
formation available and obtained through the SMART
tools in order to give the operator a global vision of

the situation. Two ’danger maps’ will be produced for
each test area, i.e. a discrete map and a continuous
map.

The discrete map is a boolean danger/no danger
map that shows all the indicators that have been de-
tected, with buffers materialising their respective dan-
ger zones. These buffers are drawn according to the
military logic behind the mine-laying strategy around
the indicators (e.g. up to 200 meters from a trench,
in the direction of the other warring party). Unused
fields are also marked since they are likely to be mined.
Safe zones such as residential areas or cultivated fields
appear as ’no danger’ zones (fig 7).

To produce the continuous map, a distance image
is generated for each indicator. A function is then
designed to rescale the values of each distance im-
age, taking into account the variations in the degree
of danger as distance to the indicator increases. The
resulting images are considered as factors. They are
standardised to a continuous scale, hence allowing us
to compare and combine them. Thanks to a pair-
wise comparison technique, a set of factor weights that
sum up to 1.0 is generated, and a factor weight rep-
resenting the relative danger of the indicator is as-
signed to each factor. The safe zones are considered
as constraints and retain their ’hard’ Boolean charac-
ter, with a weight value of 0 inside and 1 outside. A
weighted average of the factors is then performed.

The hard Boolean decision of defining a location
as absolutely dangerous or not is avoided, and each
location is given a value representing its ’degree of
danger’.

8 System architecture

The GIS-based environment of the SMART system
will be built on the ESRI ArcGIS Desktop software.
The developed management and user-interface module
connect the user at the one end and the data at the
other end. Besides the collected space and airborne
data (section 4), and the data from the Mine Infor-
mation System (section 3), a specific database was
designed to store and manage the information from
expert and contextual knowledge: vegetation, agricul-
ture, land cover and land use, ground observations,
list of potential locations and anomalies, land-cover
classes, how suspected minefield presence can be in-
ferred from that information.

The dedicated user-interface module will provide a
user-friendly environment to query, analyse and map
all data; and to easily run the SMART and GIS tools
to derive all needed information to achieve the ’danger



maps’ (section 7).

9 Conclusion

This paper presents the project SMART and its
current status. Future work includes the continuation
of the design and implementation of the detectors of
indicators and the classification tools. The module
synthesis by fusion is still under development and the
concept of ’danger maps’ have to be tried on a larger
amount of data.

Each tool is to be validated in a progressive way
in order to include the end-user’s comments into the
development stage. In addition a blind validation in-
volving mine clearing will be used to assess the merits
of the method and the improvements due to the tools.
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Figure 2: Per-region classification: cultivated areas
appear in yellow and green, while uncultivated areas
appear in violet and light red.

Figure 3: Result after Hough-transform. The mask
of the extracted power line poles was searched for an
appearance along a row. Red shows candidates and
green the detections along a line.

Figure 4: Lines detected on KVR (Green) and
Daedalus (Red) projected on the Daedalus image
(channel 4).

Figure 5: Detection of fields with parallel structure.
Blue regions: detected parallel structure, Red regions:
No parallel structure, Yellow regions: Doubt, Green
lines: Ground truth of used fields, Red lines: Ground
truth of unused fields
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Figure 6: Two tracking results: (a) on a main road;
(b) on a small path .

Figure 7: Discrete ’danger map’ of Glinska Poljana
(preliminary) Red: Danger (Buffers) Orange: Danger
(Areas no longer in use) Green: No danger (residential
areas, cultivated areas...) Other: No status (forests)


